Abstract
In this work, we investigate a model order reduction scheme for high-fidelity nonlinear structured parametric dynamical systems. More specifically, we consider a class of nonlinear dynamical systems whose nonlinear terms are polynomial functions, and the linear part corresponds to a linear structured model, such as second-order, time-delay, or fractional-order systems. Our approach relies on the Volterra series representation of these dynamical systems. Using this representation, we identify the kernels and, thus, the generalized multivariate transfer functions associated with these systems. Consequently, we present results allowing the construction of reduced-order models whose generalized transfer functions interpolate these of the original system at pre-defined frequency points. For efficient calculations, we also need the concept of a symmetric Kronecker product representation of a tensor and derive particular properties of them. Moreover, we propose an algorithm that extracts dominant subspaces from the prescribed interpolation conditions. This allows the construction of reduced-order models that preserve the structure. We also extend these results to parametric systems and a special case (delay in input/output). We demonstrate the efficiency of the proposed method by means of various numerical benchmarks.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ahmad, M.I., Benner, P., Jaimoukha, I.: Krylov subspace projection methods for model reduction of quadratic-bilinear systems. IET Control Theory Appl. 10(16), 2010–2018 (2016). https://doi.org/10.1049/iet-cta.2016.0415
Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis, K.M. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 3–58. Springer US (2010). https://doi.org/10.1007/978-1-4419-5757-3_1
Antoulas, A.C., Gosea, I.V., Ionita, A.C.: Model reduction of bilinear systems in the Loewner framework. SIAM J. Sci. Comput. 38(5), B889–B916 (2016)
Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339(9), 667–672 (2004)
Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21(4), 331–358 (2014). https://doi.org/10.1007/s11831-014-9111-2
Beattie, C.A., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. Systems Control Lett. 58(3), 225–232 (2009). https://doi.org/10.1016/j.sysconle.2008.10.016
Beddig, R.S., Benner, P., Dorschky, I., Reis, T., Schwerdtner, P., Voigt, M., Werner, S.W.R.: Structure-preserving model reduction for dissipative mechanical systems. Calm, Smooth and Smart: Novel Approaches for Influencing Vibrations by Means of Deliberately Introduced Dissipation, pp. 209–230. Springer (2023)
Bellman, R.E., Cooke, K.L.: Differential-Difference Equations. Rand Corporation (1963)
Benner, P., Breiten, T.: Two-sided projection method for nonlinear model reduction. SIAM J. Sci. Comput. 37(2), B239–B260 (2015). https://doi.org/10.1137/14097255X
Benner, P., Goyal, P.: Balanced truncation model order reduction for quadratic-bilinear systems. arXiv:1705.00160 (2017). https://arxiv.org/abs/1705.00160
Benner, P., Goyal, P.: Interpolation-based model order reduction for polynomial parametric systems. arXiv:1904.11891 (2019). https://arxiv.org/abs/1904.11891
Benner, P., Goyal, P.: Interpolation-based model order reduction for polynomial systems. SIAM J. Sci. Comp. 43(1), A84–A108 (2021). https://doi.org/10.1137/19M1259171
Benner, P., Goyal, P., Gugercin, S.: \(\cal{H} _2\)-quasi-optimal model order reduction for quadratic-bilinear control systems. SIAM J. Matrix Anal. Appl. 39(2), 983–1032 (2018). https://doi.org/10.1137/16M1098280
Benner, P., Goyal, P., Pontes Duff, I.: Identification of dominant subspaces for linear structured parametric systems and model reduction. arXiv:1910.13945 (2019). https://arxiv.org/abs/1910.13945
Benner, P., Gugercin, S., Werner, S.W.: Structured interpolation for multivariate transfer functions of quadratic-bilinear systems. Adv. Comput. Math. 50(2), 18 (2024)
Benner, P., Gugercin, S., Werner, S.W.R.: Structure-preserving interpolation for model reduction of parametric bilinear systems. Automatica J. IFAC 132, 109799 (2021). https://doi.org/10.1016/j.automatica.2021.109799
Benner, P., Gugercin, S., Werner, S.W.R.: Structure-preserving interpolation of bilinear control systems. Adv. Comput. Math. 47(3), 43 (2021). https://doi.org/10.1007/s10444-021-09863-w
Benner, P., Schilders, W., Grivet-Talocia, S., Quarteroni, A., Rozza, G., Miguel Silveira, L.: Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms. De Gruyter (2020)
Breiten, T.: Structure-preserving model reduction for integro-differential equations. SIAM J. Cont. Optim. 54(6), 2992–3015 (2016). https://doi.org/10.1137/15M1032296
Breiten, T., Damm, T.: Krylov subspace methods for model order reduction of bilinear control systems. Systems Control Lett. 59(10), 443–450 (2010)
Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)
Castañé-Selga, R., Lohmann, B., Eid, R.: Stability preservation in projection-based model order reduction of large-scale systems. Eur. J. Control. 18(2), 122–132 (2012)
Chahlaoui, Y., Lemonnier, D., Vandendorpe, A., Van Dooren, P.: Second-order balanced truncation. Linear Algebra Appl. 415(2–3), 373–384 (2006). https://doi.org/10.1016/j.laa.2004.03.032
Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)
Chellappa, S., Feng, L., Benner, P.: An adaptive sampling approach for the reduced basis method. In: Beattie, C., Benner, P., Embree, M., Gugercin, S., Lefteriu, S. (eds.) Realization and Model Reduction of Dynamical Systems - A Festschrift in Honor of the 70th Birthday of Thanos Antoulas. Springer (2022). https://arxiv.org/abs/1910.00298
Eid, R., Salimbahrami, B., Lohmann, B., Rudnyi, E.B., Korvink, J.G.: Parametric order reduction of proportionally damped second-order systems. Sensors and Materials 19(3), 149–164 (2007)
Gosea, I.V., Antoulas, A.C.: Data-driven model order reduction of quadratic-bilinear systems. Numer. Lin. Alg. Appl. 25(6), e2200 (2018)
Gosea, I.V., Pontes Duff, I., Benner, P., Antoulas, A.C.: Model order reduction of bilinear time-delay systems. In: 18th European Control Conference (ECC), pp. 2289–2294 (2019). https://doi.org/10.23919/ECC.2019.8796085
Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear–quadratic optimal control. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, pp. 3–64. SIAM (2017). https://doi.org/10.1137/1.9781611974829.ch1
Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations, vol. 99. Springer Science & Business Media (2013)
Ionita, A.C., Antoulas, A.C.: Data-driven parametrized model reduction in the Loewner framework. SIAM J. Sci. Comput. 36(3), A984–A1007 (2014). https://doi.org/10.1137/130914619
Jarlebring, E., Damm, T., Michiels, W.: Model reduction of time-delay systems using position balancing and delay Lyapunov equations. Math. Control Signals Systems 25(2), 147–166 (2013)
Kolda, T.G.: Multilinear operators for higher-order decompositions. Tech. Rep. SAND2006-2081, Sandia National Laboratories (2006)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X
Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations, La Matematica per il \(3+2\), vol. 92. Springer International Publishing (2016). ISBN: 978-3-319-15430-5
Reis, T., Stykel., T.: Balanced truncation model reduction of second-order systems. Math. Comput. Model. Dyn. Syst. 14(5), 391–406 (2008)
Rodriguez, A.C., Gugercin, S., Borggaard, J.: Interpolatory model reduction of parameterized bilinear dynamical systems. Adv. Comput. Math. 44(6), 1887–1916 (2018)
Rugh, W.J.: Nonlinear System Theory. The Johns Hopkins University Press, Baltimore, MD (1981)
Schulze, P., Unger, B., Beattie, C., Gugercin, S.: Data-driven structured realization. Linear Algebra Appl. 537, 250–286 (2018)
Werner, S.W.R.: Structure-preserving model reduction for mechanical systems. Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany (2021). https://doi.org/10.25673/38617
Funding
Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declared that they have no conflict of interest.
Additional information
Communicated by: Tobias Breiten
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
A Proof of Lemma 2.1
Proof
-
a).
First note that
(48)Since \(x_{i_1} x_{i_2} \cdots x_{i_n} = x_{j_1} x_{j_2} \cdots x_{j_n} \), for every \((j_1,\ldots ,j_n) \in \mathcal {S}_\textbf{i}\), we can write
Next, we have
which proves part (a).
-
b).
We begin with
$$\begin{aligned} \widetilde{\textbf{H}}^{(1)} \left( {\textbf{q}}^{(1)}\otimes \cdots \otimes {\textbf{q}}^{(\mathrm N)}\right)&\nonumber \\&\hspace{-3cm}= \sum _{i_1=1}^n \cdots \sum _{i_{\mathrm N}=1}^n\widetilde{\textbf{H}}_{(1)}\left( :, \left( i_1 + \sum _{l=2}^{\mathrm N}(i_l-1)n^l )\right) \right) \left( q^{(1)}_{i_1} \cdots q^{(\mathrm N)}_{i_{\mathrm N}}\right) \nonumber \\&\hspace{-3cm} = \sum _{i_1=1}^n \cdots \sum _{i_{\mathrm N}=1}^n{\textbf{H}}_{(1)} \left( \sum _{\begin{array}{c} (j_1,\ldots ,j_n) \\ \in \mathcal {S}_\textbf{i} \end{array}}\dfrac{1}{\alpha _\textbf{i}}\left( \textbf{e}_{j_1} \otimes \textbf{e}_{j_2} \otimes \cdots \otimes \textbf{e}_{j_n} \right) \right) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left( q^{(1)}_{i_1} \cdots q^{(\mathrm N)}_{i_{\mathrm N}}\right) . \end{aligned}$$(49)Since \((j_1,\ldots ,j_n) \in {\mathcal {S}}_\textbf{i}\), the above equation is invariant to the interchange of the indices \(i_k\). Therefore, the Kronecker product of the \(q_i\)’s can appear in any order that would yield the same \(\widetilde{\textbf{H}}_{(1)} \left( \widetilde{\textbf{q}}_1 \otimes \cdots \otimes \widetilde{\textbf{q}}_{\mathrm N}\right) \), where \(\left( \widetilde{\textbf{q}}_1, \ldots , \widetilde{\textbf{q}}_{\mathrm N}\right) \) belongs to the set of all permutations of the set \(\{\textbf{q}_1,\ldots ,\textbf{q}_{\mathrm N}\}\). This proves the result.
-
c).
Assuming \(l_j \in \{1,\ldots ,n\}\) for \(j \in \{1,\ldots , \mathrm N+1\}\), we have
$$\begin{aligned}&\textbf{e}_{l_2}\widetilde{\textbf{H}}_{(2)} \left( \textbf{e}_{l_{\mathrm N +1}} \otimes \textbf{e}_{l_{\mathrm N}} \otimes \cdots \otimes \textbf{e}_{l_{3}} \otimes \textbf{e}_{l_{1}} \right) \\&\hspace{1.2cm}\text {using } (9)\\&\hspace{1cm}= \textbf{e}_{l_1}\widetilde{\textbf{H}}_{(1)} \left( \textbf{e}_{l_{\mathrm N +1}} \otimes \textbf{e}_{l_{\mathrm N}} \otimes \cdots \otimes \textbf{e}_{l_{3}} \otimes \textbf{e}_{l_{2}} \right) \\&\hspace{1.2cm}\text {using } (49)\\&\hspace{1cm}= \textbf{e}_{l_1}\widetilde{\textbf{H}}_{(1)} \left( \textbf{e}_{l_{\mathrm N +1}} \otimes \textbf{e}_{l_{\mathrm N}} \otimes \cdots \otimes \textbf{e}_{l_{m+1}} \otimes \textbf{e}_{l_2} \otimes \textbf{e}_{l_m} \otimes \textbf{e}_{l_{m-1}} \otimes \textbf{e}_{l_{3}}\right) \\&\hspace{1.2cm} \text {using } (9)\\&\hspace{1cm}= \textbf{e}_{l_2}\widetilde{\textbf{H}}_{(m)} \left( \textbf{e}_{l_{\mathrm N +1}} \otimes \textbf{e}_{l_{\mathrm N}} \otimes \cdots \otimes \textbf{e}_{l_{m+1}} \otimes \textbf{e}_{l_m} \otimes \textbf{e}_{l_{m-1}} \otimes \textbf{e}_{l_{3}} \otimes \textbf{e}_{l_1}\right) . \end{aligned}$$This shows that the entries in \(\widetilde{\textbf{H}}_{(2)}\) and \(\widetilde{\textbf{H}}_{(m)}\) (\(m\ge 2\)) are equal, implying the result.
B Fundamental solution using frequency domain methods
The fundamental solution of a linear operator can be defined in different ways. In this work, we follow the approaches that use the frequency domain representation of the linear operator. We refer the reader to [8, 30] for more details.
Let us start by defining the unilateral Laplace transform. Given a function \(\textbf{g}(\cdot )\), its unilateral Laplace transform is given by
where \(\textbf{G}(\cdot )\) corresponds to the frequency domain representation of \({\textbf{g}}(\cdot )\).
Now, let us consider a linear operator \({\mathcal {L}}\) such as shown in Table 1. By means of the Laplace transform, we obtain the frequency domain representation of \(({\mathcal {L}}{\textbf{x}})(t)\) as follows:
where \(\textbf{X}(s)\) corresponds to the Laplace transform of \(\textbf{x}(t)\) and \({\mathcal {K}}(s)\) corresponds to the frequency domain representation of the operator \({\mathcal {L}}\). Let us assume that the inverse of the Laplace transform of \({\mathcal {K}}^{-1}(s)\) exists and is given as
Then, \(\mathrm {\Phi }(t)\) is the fundamental solution associated to the linear operator \({\mathcal {L}}\). Indeed, \(\mathrm {\Phi }(t)\) is the solution of the functional differential equation
where \(\delta (t)\) is the Dirac delta distribution and the initial conditions are all zero. Moreover, the inhomogeneous equation
with \(\textbf{g}(\cdot )\) being a suitable function, has a solution in convolution form
C Tangential interpolation-based MOR for MIMO systems
Here, we discuss a construction of an interpolating ROM for MIMO polynomial systems. Similar to the SISO case, the leading generalized transfer functions for a MIMO polynomial system are given as follows:
Lemma C.1
Consider the original system as given in (3). Let \(\sigma _i \in \mathbb {C}\), \(i \in \{1,\ldots ,\widetilde{r}\}\), be interpolation points such that \(\mathcal {K}(s)\) is invertible for all \(s \in \{\sigma _1,\ldots , \sigma _{\widetilde{r}}\}\), and \(\textbf{b}_i \in \mathbb {C}^m\) and \(\textbf{c}_i\in \mathbb {C}^q\) for \(i \in \{1,\ldots ,{\widetilde{r}}\}\) be right and left tangential directions corresponding to \(\sigma _i\), respectively. Let \(\textbf{V}\) and \(\textbf{W}\) be defined as follows:
If a ROM is computed as shown in (7) using the projection matrices \(\textbf{V}\) and \(\textbf{W}\), where we assume \(\textbf{V}\) and \(\textbf{W}\) to be of full rank, then the following interpolation conditions are fulfilled:
where \(i \in \{1,\ldots , \widetilde{r}\}\), \(\xi \in \{2,\ldots ,d\} \), \(\eta \in \{1,\ldots ,d\}\) and \(\dfrac{\partial }{\partial s_j}\) denotes the partial derivative with respect to \(s_j\) of a given function.
Proof
The proof of these interpolation conditions follows exactly the one of Theorem 3.1.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Goyal, P., Duff, I.P. & Benner, P. Dominant subspaces of high-fidelity polynomial structured parametric dynamical systems and model reduction. Adv Comput Math 50, 42 (2024). https://doi.org/10.1007/s10444-024-10133-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-024-10133-8