[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new approach to proper orthogonal decomposition with difference quotients

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In a recent work (Koc et al., SIAM J. Numer. Anal. 59(4), 2163–2196, 2021), the authors showed that including difference quotients (DQs) is necessary in order to prove optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order models of the heat equation. In this work, we introduce a new approach to including DQs in the POD procedure. Instead of computing the POD modes using all of the snapshot data and DQs, we only use the first snapshot along with all of the DQs and special POD weights. We show that this approach retains all of the numerical analysis benefits of the standard POD DQ approach, while using a POD data set that has approximately half the number of snapshots as the standard POD DQ approach, i.e., the new approach requires less computational effort. We illustrate our theoretical results with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach. SIAM J. Control Optim. 55(5), 3091–3115 (2017). https://doi.org/10.1137/15M1039596

    Article  MathSciNet  MATH  Google Scholar 

  2. Baker, C.G., Gallivan, K.A., Van Dooren, P.: Low-rank incremental methods for computing dominant singular subspaces. Linear Algebra Appl. 436(8), 2866–2888 (2012). https://doi.org/10.1016/j.laa.2011.07.018

    Article  MathSciNet  MATH  Google Scholar 

  3. Bergmann, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys. Fluids 17(9), 097101 (2005). https://doi.org/10.1063/1.2033624

    Article  MATH  Google Scholar 

  4. Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl. 415(1), 20–30 (2006). https://doi.org/10.1016/j.laa.2005.07.021

    Article  MathSciNet  MATH  Google Scholar 

  5. Chapelle, D., Gariah, A., Sainte-Marie, J.: Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples. ESAIM Math. Model. Numer. Anal. 46(4), 731–757 (2012). https://doi.org/10.1051/m2an/2011053

    Article  MathSciNet  MATH  Google Scholar 

  6. Djouadi, S.M.: On the optimality of the proper orthogonal decomposition and balanced truncation. In: Proceedings of the 47th IEEE conference on decision and control, pp. 4221–4226 (2008)

  7. Fareed, H., Singler, J.R.: Error analysis of an incremental proper orthogonal decomposition algorithm for PDE simulation data. J. Comput. Appl. Math. 368, 112525 (2020). https://doi.org/10.1016/j.cam.2019.112525

    Article  MathSciNet  MATH  Google Scholar 

  8. Fareed, H., Singler, J.R., Zhang, Y., Shen, J.: Incremental proper orthogonal decomposition for PDE simulation data. Comput. Math. Appl. Int. J. 75(6), 1942–1960 (2018). https://doi.org/10.1016/j.camwa.2017.09.012

    Article  MathSciNet  MATH  Google Scholar 

  9. Galán del Sastre, P., Bermejo, R.: Error estimates of proper orthogonal decomposition eigenvectors and Galerkin projection for a general dynamical system arising in fluid models. Numer. Math. 110(1), 49–81 (2008). https://doi.org/10.1007/s00211-008-0155-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators, vol. I, Volume 49 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (1990)

    Book  MATH  Google Scholar 

  11. Gräßle, C., Hinze, M., Lang, J., Ullmann, S.: POD model order reduction with space-adapted snapshots for incompressible flows. Adv. Comput. Math. 45(5-6), 2401–2428 (2019). https://doi.org/10.1007/s10444-019-09716-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, H., Xin, J., Zhang, Z.: Error estimates for a POD method for solving viscous g-equations in incompressible cellular flows. SIAM J. Sci. Comput. 43(1), A636–A662 (2021). https://doi.org/10.1137/19M1241854

    Article  MathSciNet  MATH  Google Scholar 

  13. Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control, model reduction and approximation, of Comput. Sci. Eng., vol. 15, pp 3–63,. SIAM, Philadelphia (2017). https://doi.org/10.1137/1.9781611974829.ch1

    Google Scholar 

  14. Herkt, S., Hinze, M., Pinnau, R.: Convergence analysis of Galerkin POD for linear second order evolution equations. Electron. Trans. Numer. Anal. 40, 321–337 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Higham, J.E., Shahnam, M., Vaidheeswaran, A.: Using a proper orthogonal decomposition to elucidate features in granular flows. Granul. Matter 22(4). https://doi.org/10.1007/s10035-020-01037-7 (2020)

  16. Hijazi, S., Stabile, G., Mola, A., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. 416, 109513 (2020). https://doi.org/10.1016/j.jcp.2020.109513

    Article  MathSciNet  MATH  Google Scholar 

  17. Himpe, C., Leibner, T., Rave, S.: Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40(5), A3267–A3292 (2018). https://doi.org/10.1137/16M1085413

    Article  MathSciNet  MATH  Google Scholar 

  18. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. Lect. Notes in Comput Sci Eng, pp. 261–306. Springer. https://doi.org/10.1007/3-540-27909-1_10(2005)

  19. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, coherent structures dynamical systems and symmetry, 2nd edn. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  20. Hömberg, D., Volkwein, S.: Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 38(10), 1003–1028 (2003). https://doi.org/10.1016/S0895-7177(03)90102-6

    Article  MathSciNet  MATH  Google Scholar 

  21. Iliescu, T., Wang, Z.: Variational multiscale proper orthogonal decomposition: convection-dominated convection-diffusion-reaction equations. Math. Comp. 82(283), 1357–1378 (2013). https://doi.org/10.1090/S0025-5718-2013-02683-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Iliescu, T., Wang, Z.: Are the snapshot difference quotients needed in the proper orthogonal decomposition?. SIAM J. Sci. Comput. 36(3), A1221–A1250 (2014a). https://doi.org/10.1137/130925141

    Article  MathSciNet  MATH  Google Scholar 

  23. Iliescu, T., Wang, Z.: Variational multiscale proper orthogonal decomposition: Navier-Stokes equations. Numer. Methods Partial Differ. Equ. 30(2), 641–663 (2014b). https://doi.org/10.1002/num.21835

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin, B., Zhou, Z.: An analysis of Galerkin proper orthogonal decomposition for subdiffusion. ESAIM Math. Model. Numer. Anal. 51(1), 89–113 (2017). https://doi.org/10.1051/m2an/2016017

    Article  MathSciNet  MATH  Google Scholar 

  25. Karasözen, B., Uzunca, M.: Energy preserving model order reduction of the nonlinear schrödinger equation. Adv. Comput. Math. 44(6), 1769–1796 (2018). https://doi.org/10.1007/s10444-018-9593-9

    Article  MathSciNet  MATH  Google Scholar 

  26. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    Book  Google Scholar 

  27. Kean, K., Schneier, M.: Error analysis of supremizer pressure recovery for POD based reduced-order models of the time-dependent Navier-STokes equations. SIAM J. Numer. Anal. 58(4), 2235–2264 (2020). https://doi.org/10.1137/19M128702X

    Article  MathSciNet  MATH  Google Scholar 

  28. Koc, B., Mohebujjaman, M., Mou, C., Iliescu, T.: Commutation error in reduced order modeling of fluid flows. Adv. Comput. Math. 45(5-6), 2587–2621 (2019). https://doi.org/10.1007/s10444-019-09739-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Koc, B., Rubino, S., Schneier, M., Singler, J.R., Iliescu, T.: On optimal pointwise in time error bounds and difference quotients for the proper orthogonal decomposition. SIAM J. Numer. Anal. 59(4), 2163–2196 (2021). https://doi.org/10.1137/20M1371798

    Article  MathSciNet  MATH  Google Scholar 

  30. Kostova-Vassilevska, T., Oxberry, G.M.: Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives. J. Comput. Appl. Math. 330, 553–573 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90(1), 117–148 (2001). https://doi.org/10.1007/s002110100282

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002). https://doi.org/10.1137/S0036142900382612

    Article  MathSciNet  MATH  Google Scholar 

  33. Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. M2AN Math. Model. Numer. Anal. 42(1), 1–23 (2008). https://doi.org/10.1051/m2an:2007054

    Article  MathSciNet  MATH  Google Scholar 

  34. Lax, P.D.: Functional analysis. Pure and Applied Mathematics. Wiley-Interscience [Wiley], New York (2002)

    MATH  Google Scholar 

  35. Leibfritz, F., Volkwein, S.: Numerical feedback controller design for PDE systems using model reduction: techniques and case studies, Real-time PDE-constrained optimization, of Comput. Sci. Eng., vol. 3, pp 53–72. SIAM, Philadelphia (2007). https://doi.org/10.1137/1.9780898718935.ch3

    MATH  Google Scholar 

  36. Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications. I. Theory. J. Sound Vib. 252(3), 527–544 (2002). https://doi.org/10.1006/jsvi.2001.4041

    Article  MathSciNet  MATH  Google Scholar 

  37. Locke, S., Singler, J.: New proper orthogonal decomposition approximation theory for PDE solution data. SIAM J. Numer. Anal. 58(6), 3251–3285 (2020). https://doi.org/10.1137/19M1297002

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo, Z., Chen, J., Navon, I.M., Yang, X.: Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations. SIAM J. Numer. Anal. 47(1), 1–19 (2008/09). https://doi.org/10.1137/070689498

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen, V.B., Dou, H.S., Willcox, K., Khoo, B.C.: Model order reduction for reacting flows: laminar Gaussian flame applications. In: 30th international symposium on shock waves vol. 1, pp. 337–343. Springer International Publishing. https://doi.org/10.1007/978-3-319-46213-4_57 (2017)

  40. Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations volume 92 of Unitext. Springer, Cham (2016)

    MATH  Google Scholar 

  41. Rathinam, M., Petzold, L.R.: A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41(5), 1893–1925 (2003). https://doi.org/10.1137/S0036142901389049

    Article  MathSciNet  MATH  Google Scholar 

  42. Reed, M., Simon, B.: Methods of modern mathematical physics I: functional analysis, 2nd edn. Academic Press, Inc., New York (1980)

    MATH  Google Scholar 

  43. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 997–1013 (2005). https://doi.org/10.1142/S0218127405012429

    Article  MathSciNet  MATH  Google Scholar 

  44. Rubino, S.: A streamline derivative POD-ROM for advection-diffusion-reaction equations. ESAIM: Proc. Surv. 64, 121–136 (2018). https://doi.org/10.1051/proc/201864121

    Article  MathSciNet  MATH  Google Scholar 

  45. Sachs, E.W., Schu, M.: A priori error estimates for reduced order models in finance. ESAIM Math. Model. Numer. Anal. 47(2), 449–469 (2013). https://doi.org/10.1051/m2an/2012039

    Article  MathSciNet  MATH  Google Scholar 

  46. Singler, J.R.: Convergent snapshot algorithms for infinite-dimensional Lyapunov equations. IMA J. Numer. Anal. 31(4), 1468–1496 (2011). https://doi.org/10.1093/imanum/drq028

    Article  MathSciNet  MATH  Google Scholar 

  47. Singler, J.R.: New POD error expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. SIAM J. Numer. Anal. 52(2), 852–876 (2014). https://doi.org/10.1137/120886947

    Article  MathSciNet  MATH  Google Scholar 

  48. Volkwein, S.: Interpretation of proper orthogonal decomposition as singular value decomposition and HJB-based feedback design. In: Proceedings of the 16th international symposium on mathematical theory of networks and systems (MTNS) (2004)

  49. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002). https://doi.org/10.2514/2.1570

    Article  Google Scholar 

  50. Zhu, S., Dedè, L., Quarteroni, A.: Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation. ESAIM Math. Model. Numer. Anal. 51(4), 1197–1221 (2017). https://doi.org/10.1051/m2an/2016056

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

J. Singler was supported by the US National Science Foundation (NSF) under grant number 2111421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Locke Eskew.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Stefan Volkwein

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

John R. Singler contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskew, S.L., Singler, J.R. A new approach to proper orthogonal decomposition with difference quotients. Adv Comput Math 49, 13 (2023). https://doi.org/10.1007/s10444-023-10011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-023-10011-9

Keywords

Mathematics Subject Classification (2010)

Navigation