Abstract
In a recent work (Koc et al., SIAM J. Numer. Anal. 59(4), 2163–2196, 2021), the authors showed that including difference quotients (DQs) is necessary in order to prove optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order models of the heat equation. In this work, we introduce a new approach to including DQs in the POD procedure. Instead of computing the POD modes using all of the snapshot data and DQs, we only use the first snapshot along with all of the DQs and special POD weights. We show that this approach retains all of the numerical analysis benefits of the standard POD DQ approach, while using a POD data set that has approximately half the number of snapshots as the standard POD DQ approach, i.e., the new approach requires less computational effort. We illustrate our theoretical results with numerical experiments.
Similar content being viewed by others
References
Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach. SIAM J. Control Optim. 55(5), 3091–3115 (2017). https://doi.org/10.1137/15M1039596
Baker, C.G., Gallivan, K.A., Van Dooren, P.: Low-rank incremental methods for computing dominant singular subspaces. Linear Algebra Appl. 436(8), 2866–2888 (2012). https://doi.org/10.1016/j.laa.2011.07.018
Bergmann, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys. Fluids 17(9), 097101 (2005). https://doi.org/10.1063/1.2033624
Brand, M.: Fast low-rank modifications of the thin singular value decomposition. Linear Algebra Appl. 415(1), 20–30 (2006). https://doi.org/10.1016/j.laa.2005.07.021
Chapelle, D., Gariah, A., Sainte-Marie, J.: Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples. ESAIM Math. Model. Numer. Anal. 46(4), 731–757 (2012). https://doi.org/10.1051/m2an/2011053
Djouadi, S.M.: On the optimality of the proper orthogonal decomposition and balanced truncation. In: Proceedings of the 47th IEEE conference on decision and control, pp. 4221–4226 (2008)
Fareed, H., Singler, J.R.: Error analysis of an incremental proper orthogonal decomposition algorithm for PDE simulation data. J. Comput. Appl. Math. 368, 112525 (2020). https://doi.org/10.1016/j.cam.2019.112525
Fareed, H., Singler, J.R., Zhang, Y., Shen, J.: Incremental proper orthogonal decomposition for PDE simulation data. Comput. Math. Appl. Int. J. 75(6), 1942–1960 (2018). https://doi.org/10.1016/j.camwa.2017.09.012
Galán del Sastre, P., Bermejo, R.: Error estimates of proper orthogonal decomposition eigenvectors and Galerkin projection for a general dynamical system arising in fluid models. Numer. Math. 110(1), 49–81 (2008). https://doi.org/10.1007/s00211-008-0155-9
Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of linear operators, vol. I, Volume 49 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel (1990)
Gräßle, C., Hinze, M., Lang, J., Ullmann, S.: POD model order reduction with space-adapted snapshots for incompressible flows. Adv. Comput. Math. 45(5-6), 2401–2428 (2019). https://doi.org/10.1007/s10444-019-09716-7
Gu, H., Xin, J., Zhang, Z.: Error estimates for a POD method for solving viscous g-equations in incompressible cellular flows. SIAM J. Sci. Comput. 43(1), A636–A662 (2021). https://doi.org/10.1137/19M1241854
Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control, model reduction and approximation, of Comput. Sci. Eng., vol. 15, pp 3–63,. SIAM, Philadelphia (2017). https://doi.org/10.1137/1.9781611974829.ch1
Herkt, S., Hinze, M., Pinnau, R.: Convergence analysis of Galerkin POD for linear second order evolution equations. Electron. Trans. Numer. Anal. 40, 321–337 (2013)
Higham, J.E., Shahnam, M., Vaidheeswaran, A.: Using a proper orthogonal decomposition to elucidate features in granular flows. Granul. Matter 22(4). https://doi.org/10.1007/s10035-020-01037-7 (2020)
Hijazi, S., Stabile, G., Mola, A., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. 416, 109513 (2020). https://doi.org/10.1016/j.jcp.2020.109513
Himpe, C., Leibner, T., Rave, S.: Hierarchical approximate proper orthogonal decomposition. SIAM J. Sci. Comput. 40(5), A3267–A3292 (2018). https://doi.org/10.1137/16M1085413
Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control. Lect. Notes in Comput Sci Eng, pp. 261–306. Springer. https://doi.org/10.1007/3-540-27909-1_10(2005)
Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, coherent structures dynamical systems and symmetry, 2nd edn. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (2012)
Hömberg, D., Volkwein, S.: Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 38(10), 1003–1028 (2003). https://doi.org/10.1016/S0895-7177(03)90102-6
Iliescu, T., Wang, Z.: Variational multiscale proper orthogonal decomposition: convection-dominated convection-diffusion-reaction equations. Math. Comp. 82(283), 1357–1378 (2013). https://doi.org/10.1090/S0025-5718-2013-02683-X
Iliescu, T., Wang, Z.: Are the snapshot difference quotients needed in the proper orthogonal decomposition?. SIAM J. Sci. Comput. 36(3), A1221–A1250 (2014a). https://doi.org/10.1137/130925141
Iliescu, T., Wang, Z.: Variational multiscale proper orthogonal decomposition: Navier-Stokes equations. Numer. Methods Partial Differ. Equ. 30(2), 641–663 (2014b). https://doi.org/10.1002/num.21835
Jin, B., Zhou, Z.: An analysis of Galerkin proper orthogonal decomposition for subdiffusion. ESAIM Math. Model. Numer. Anal. 51(1), 89–113 (2017). https://doi.org/10.1051/m2an/2016017
Karasözen, B., Uzunca, M.: Energy preserving model order reduction of the nonlinear schrödinger equation. Adv. Comput. Math. 44(6), 1769–1796 (2018). https://doi.org/10.1007/s10444-018-9593-9
Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition
Kean, K., Schneier, M.: Error analysis of supremizer pressure recovery for POD based reduced-order models of the time-dependent Navier-STokes equations. SIAM J. Numer. Anal. 58(4), 2235–2264 (2020). https://doi.org/10.1137/19M128702X
Koc, B., Mohebujjaman, M., Mou, C., Iliescu, T.: Commutation error in reduced order modeling of fluid flows. Adv. Comput. Math. 45(5-6), 2587–2621 (2019). https://doi.org/10.1007/s10444-019-09739-0
Koc, B., Rubino, S., Schneier, M., Singler, J.R., Iliescu, T.: On optimal pointwise in time error bounds and difference quotients for the proper orthogonal decomposition. SIAM J. Numer. Anal. 59(4), 2163–2196 (2021). https://doi.org/10.1137/20M1371798
Kostova-Vassilevska, T., Oxberry, G.M.: Model reduction of dynamical systems by proper orthogonal decomposition: error bounds and comparison of methods using snapshots from the solution and the time derivatives. J. Comput. Appl. Math. 330, 553–573 (2018)
Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90(1), 117–148 (2001). https://doi.org/10.1007/s002110100282
Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002). https://doi.org/10.1137/S0036142900382612
Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. M2AN Math. Model. Numer. Anal. 42(1), 1–23 (2008). https://doi.org/10.1051/m2an:2007054
Lax, P.D.: Functional analysis. Pure and Applied Mathematics. Wiley-Interscience [Wiley], New York (2002)
Leibfritz, F., Volkwein, S.: Numerical feedback controller design for PDE systems using model reduction: techniques and case studies, Real-time PDE-constrained optimization, of Comput. Sci. Eng., vol. 3, pp 53–72. SIAM, Philadelphia (2007). https://doi.org/10.1137/1.9780898718935.ch3
Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications. I. Theory. J. Sound Vib. 252(3), 527–544 (2002). https://doi.org/10.1006/jsvi.2001.4041
Locke, S., Singler, J.: New proper orthogonal decomposition approximation theory for PDE solution data. SIAM J. Numer. Anal. 58(6), 3251–3285 (2020). https://doi.org/10.1137/19M1297002
Luo, Z., Chen, J., Navon, I.M., Yang, X.: Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations. SIAM J. Numer. Anal. 47(1), 1–19 (2008/09). https://doi.org/10.1137/070689498
Nguyen, V.B., Dou, H.S., Willcox, K., Khoo, B.C.: Model order reduction for reacting flows: laminar Gaussian flame applications. In: 30th international symposium on shock waves vol. 1, pp. 337–343. Springer International Publishing. https://doi.org/10.1007/978-3-319-46213-4_57 (2017)
Quarteroni, A., Manzoni, A., Negri, F.: Reduced basis methods for partial differential equations volume 92 of Unitext. Springer, Cham (2016)
Rathinam, M., Petzold, L.R.: A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41(5), 1893–1925 (2003). https://doi.org/10.1137/S0036142901389049
Reed, M., Simon, B.: Methods of modern mathematical physics I: functional analysis, 2nd edn. Academic Press, Inc., New York (1980)
Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 997–1013 (2005). https://doi.org/10.1142/S0218127405012429
Rubino, S.: A streamline derivative POD-ROM for advection-diffusion-reaction equations. ESAIM: Proc. Surv. 64, 121–136 (2018). https://doi.org/10.1051/proc/201864121
Sachs, E.W., Schu, M.: A priori error estimates for reduced order models in finance. ESAIM Math. Model. Numer. Anal. 47(2), 449–469 (2013). https://doi.org/10.1051/m2an/2012039
Singler, J.R.: Convergent snapshot algorithms for infinite-dimensional Lyapunov equations. IMA J. Numer. Anal. 31(4), 1468–1496 (2011). https://doi.org/10.1093/imanum/drq028
Singler, J.R.: New POD error expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. SIAM J. Numer. Anal. 52(2), 852–876 (2014). https://doi.org/10.1137/120886947
Volkwein, S.: Interpretation of proper orthogonal decomposition as singular value decomposition and HJB-based feedback design. In: Proceedings of the 16th international symposium on mathematical theory of networks and systems (MTNS) (2004)
Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002). https://doi.org/10.2514/2.1570
Zhu, S., Dedè, L., Quarteroni, A.: Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation. ESAIM Math. Model. Numer. Anal. 51(4), 1197–1221 (2017). https://doi.org/10.1051/m2an/2016056
Funding
J. Singler was supported by the US National Science Foundation (NSF) under grant number 2111421.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Communicated by: Stefan Volkwein
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
John R. Singler contributed equally to this work.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Eskew, S.L., Singler, J.R. A new approach to proper orthogonal decomposition with difference quotients. Adv Comput Math 49, 13 (2023). https://doi.org/10.1007/s10444-023-10011-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10444-023-10011-9
Keywords
- Proper orthogonal decomposition
- Projections
- Approximation theory
- Difference quotients
- Reduced order models