[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multivariate quadrature of a singular integrand

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Consider an integral with a point singularity in its integrand, such as ρα or \(\log \rho \). We introduceand discuss two methods for approximating such integrals, in both two and three dimensions. The methods are first introduced using the unit disk as the quadrature region, and then, they are extended to other regions and to three dimensions. The error behavior of the numerical integration for singular points near to the boundary is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G., Askey, R.A., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  2. Atkinson, K.: The numerical evaluation of particular solutions for Poisson’s equation. IMA J. Numer. Anal. 5, 319–338 (1985)

    Article  MathSciNet  Google Scholar 

  3. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Hoboken, Wiley (1989)

    MATH  Google Scholar 

  4. Atkinson, K.: Quadrature of singular integrands over surfaces. Electron. Trans. Numer. Anal. 17, 133–150 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Atkinson, K., Hansen, O.: Creating domain mappings. Electron. Trans. Numer. Anal. 39, 202–230 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere : An Introduction, Lecture Notes in Mathematics #2044. Springer, New York (2012)

    Book  Google Scholar 

  7. Botha, M.: A family of augmented Duffy transformations for near-singularity cancellation quadrature. IEEE Trans. Antennas Propag. 61, 3123–3134 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chernov, A., Schwab, C.: Exponential convergence of Gauss-Jacobi quadratures for singular integrals over simplices in arbitrary dimension. SIAM J. Num Anal. 50, 1433–1455 (2012)

    Article  MathSciNet  Google Scholar 

  9. Donaldson, J., Elliott, D.: A unified approach to quadrature rules with asymptotic estimates of their remainders. SIAM J. Num Anal. 9, 573–602 (1972)

    Article  MathSciNet  Google Scholar 

  10. Klöckner, A., Barnett, A., Greengard, L.: Quadrature by expansion: A new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)

    Article  MathSciNet  Google Scholar 

  11. Lyness, J.N.: An error functional expansion for n-dimensional quadrature with an integrand function singular at a point. Math. Comput. 30, 1–23 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Strain, J.: Locally corrected multidimensional quadrature rules for singular functions. SIAM J. Sci. Comput. 16, 992–1017 (1995)

    Article  MathSciNet  Google Scholar 

  13. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  14. Tornberg, A.-K.: Multi-dimensional quadrature of singular and discontinuous functions. BIT 42, 644–669 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chien.

Additional information

Communicated by: Zydrunas Gimbutas

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atkinson, K., Chien, D. & Hansen, O. Multivariate quadrature of a singular integrand. Adv Comput Math 47, 44 (2021). https://doi.org/10.1007/s10444-021-09869-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-021-09869-4

Keywords

Mathematics Subject Classification (2010)

Navigation