[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equation

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Two fast L1 time-stepping methods, including the backward Euler and stabilized semi-implicit schemes, are suggested for the time-fractional Allen-Cahn equation with Caputo’s derivative. The time mesh is refined near the initial time to resolve the intrinsically initial singularity of solution, and unequal time steps are always incorporated into our approaches so that a adaptive time-stepping strategy can be used in long-time simulations. It is shown that the proposed schemes using the fast L1 formula preserve the discrete maximum principle. Sharp error estimates reflecting the time regularity of solution are established by applying the discrete fractional Grönwall inequality and global consistency analysis. Numerical experiments are presented to show the effectiveness of our methods and to confirm our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, M., Cahn, W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. Cahn, J., Hilliard, J.: Free energy of a nonuniform system I. interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  3. Clarke, S., Vvedensky, D.: Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: a computational modeling approach. Phys. Rev. Let. 58, 2235–2238 (1987)

    Article  Google Scholar 

  4. Zhao, J., Shen, Y., Haapasalo, M., Wang, Z., Wang, Q.: A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms. J. Theor. Bio. 392, 83–98 (2016)

    Article  MathSciNet  Google Scholar 

  5. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Dis. Contin. Dyn. Sys. Ser. A 28, 1669–1691 (2012)

    Article  MathSciNet  Google Scholar 

  6. Lee, D., Kim, J.: Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations. Math. Comput. Simu. 119, 35–56 (2016)

    Article  MathSciNet  Google Scholar 

  7. Kim, J., Jeong, D., Yang, S., Choi, Y.: A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces. J. Comput. Phys. 334, 170–181 (2017)

    Article  MathSciNet  Google Scholar 

  8. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Z., Ma, Y., Qiao, Z.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)

    Article  MathSciNet  Google Scholar 

  10. Li, Y., Choi, Y., Kim, J.: Computationally efficient adaptive time step method for the Cahn-Hilliard equation. Comput. Math Appl. 73, 1855–1864 (2017)

    Article  MathSciNet  Google Scholar 

  11. Inc, M., Yusuf, A., Aliyu, A., Baleanu, D.: Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: lie symmetry analysis, explicit solutions and convergence analysis. Physica A Stat. Mech. Appl. 493, 94–106 (2018)

    Article  MathSciNet  Google Scholar 

  12. Akagi, G., Schimperna, G., Segatti, A.: Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equations 261, 2935–2985 (2016)

    Article  MathSciNet  Google Scholar 

  13. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1–18 (2017)

    Article  MathSciNet  Google Scholar 

  14. Li, Z., Wang, H., Yang, D.: A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation. J. Comput. Phys. 347, 20–38 (2017)

    Article  MathSciNet  Google Scholar 

  15. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen-Cahn and Cahn-Hilliard phase-field models and their numerical investigation. Comp. Math. Appl. 76, 1876–1892 (2018)

    Article  MathSciNet  Google Scholar 

  16. Zhao, J., Chen, L., Wang, H.: On power law scaling dynamics for time-fractional phase field models during coarsening. Comm. Non. Sci. Numer. Simu. 70, 257–270 (2019)

    Article  MathSciNet  Google Scholar 

  17. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase field equations. SIAM J. Sci. Comput. 41, A3757–A3778 (2019)

    Article  MathSciNet  Google Scholar 

  18. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1, scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  20. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  21. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)

    Article  MathSciNet  Google Scholar 

  22. Du, Q., Yang, J., Zhou, Z.: Time-fractional Allen-Cahn equations: analysis and numerical methods. arXiv:1906.06584v1 (2019)

  23. Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of nonuniform L1 formula for time-fractional reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  24. Liao, H.-L., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  25. Liao, H.-L., Mclean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem. arXiv:1803.09873v4. in review (2018)

  26. Liao, H.-L., Mclean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  27. Jiang, S., Zhang, J., Qian, Z., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Comm. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  28. López-Marcos, J.C.: A difference scheme for a nonlinear partial integr-odifferential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  Google Scholar 

  29. McLean, W., Mustapha, K. : A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Profs. Jia Zhao and Yuezheng Gong for their valuable discussions and fruitful suggestions. The authors are very grateful to anonymous referees for their invaluable comments and suggestions.

Funding

Hong-lin Liao is financially supported by a grant 1008-56SYAH18037 from NUAA Scientific Research Starting Fund of Introduced Talent. Luming Zhang is financially supported by the research grants No. 11571181 from National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Additional information

Communicated by: Martin Stynes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Discrete fractional Grönwall lemma

Appendix. Discrete fractional Grönwall lemma

We recall the recently developed discrete fractional Grönwall inequality in [26], which is applicable for any nonuniform time meshes and suitable for a variety of discrete fractional derivatives having a discrete form of \({\sum }_{k=1}^{n}A_{n-k}^{(n)}\triangledown _{\tau } v^{k}\). The following fractional Grönwall lemma, involving the well-known Mittag–Leffler function \(E_{\alpha }(z):={\sum }_{k=0}^{\infty }\frac {z^{k}}{\Gamma (1+k\alpha )}\), gathers three previous (slightly simplified) results from [26, Lemma 2.2, Theorems 3.1 and 3.2].

Lemma A.1

For n = 1, 2,⋯ ,N, assume that the discrete convolution kernels \(\{A_{n-k}^{(n)}\}_{k=1}^{n}\) satisfy the following two assumptions:

  • Ass1. There is a constant πa > 0 such that \(A_{n-k}^{(n)}\geq \frac {1}{\pi _{a}}{\int \limits }_{t_{k-1}}^{t_{k}}\frac {\omega _{1-\alpha }(t_{n}-s)}{\tau _{k}} s\) for \(1\leqslant k\leqslant n\).

  • Ass2. The discrete kernels are monotone, i.e., \(A_{n-k-1}^{(n)}-A_{n-k}^{(n)}\geq 0\) for \(1\leqslant k\leqslant n-1\).

Define also a sequence of discrete complementary convolution kernels \(\{p_{n-j}^{(n)}\}_{j=1}^{n}\) by

$$ p_{0}^{(n)}:=\frac{1}{A_{0}^{(n)}},\quad p_{n-j}^{(n)}:= \frac{1}{p_{0}^{(j)}} \sum\limits_{k=j+1}^{n}\left( {A_{k-j-1}^{(k)}-A_{k-j}^{(k)}}\right)p_{n-k}^{(n)}, \quad 1\leqslant j\leqslant n-1. $$
(A.1)

Then the discrete complementary kernels \(p^{(n)}_{n-j}\ge 0\) are well-defined and fulfill

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{j=k}^{n}p^{(n)}_{n-j}A_{j-k}^{(j)}= 1, \quad\text{ for } 1\le k\le n\le N. \end{array} $$
(A.2)
$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{j=1}^{n}p^{(n)}_{n-j}\omega_{1+m\alpha-\alpha}(t_{j})\leqslant \pi_{a}\omega_{1+m\alpha}(t_{n}), \text{ for } m=0,1 \text{ and } 1\le n\le N. \end{array} $$
(A.3)

Suppose that the offset parameter \(0 \leqslant \nu <1\), λ is a nonnegative constant independent of the time steps and the maximum step size \(\tau \le 1/\sqrt [\alpha ]{2{\Gamma }(2-\alpha )\lambda \pi _{a}}.\) If the nonnegative sequences \((v^{k})_{k=0}^{N}\), \((\xi ^{k})_{k=1}^{N}\) and \((\eta ^{k})_{k=1}^{N}\) satisfy

$$ {\sum}_{k=1}^{n}A_{n-k}^{(n)}\triangledown_{\tau} v^{k}\le \lambda v^{n-\nu}+\xi^{n}+\eta^{n}\quad\text{ for } 1\le n\le N, $$
(A.4)

then it holds that, for 1 ≤ nN,

$$ \begin{array}{@{}rcl@{}} v^{n}&\le&2E_{\alpha}\left( 2\max\{1,\rho\}\lambda\pi_{a} t_{n}^{\alpha}\right) \left( v^{0}+\max_{1\le k\le n}{\sum}_{j=1}^{k}p^{(k)}_{k-j}(\xi^{j}+\eta^{j})\right)\\ &\le&2E_{\alpha}\left( 2\max\{1,\rho\}\lambda\pi_{a} t_{n}^{\alpha}\right)\\ &&\times \left( v^{0}+{\Gamma}(1-\alpha)\pi_{a}\max_{1\le k\le n}\{t_{k}^{\alpha}\xi^{k}\}+\pi_{a}\omega_{1+\alpha}(t_{n})\max_{1\le k\le n}\eta^{k}\right). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, B., Liao, Hl. & Zhang, L. Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equation. Adv Comput Math 46, 37 (2020). https://doi.org/10.1007/s10444-020-09782-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09782-2

Keywords

Mathematics subject classification (2010)

Navigation