Abstract
In this paper, we propose a variant of the substructuring preconditioner for solving three-dimensional elliptic-type equations with strongly discontinuous coefficients. In the proposed preconditioner, we use the simplest coarse solver associated with the finite element space induced by the coarse partition and construct inexact interface solvers based on overlapping domain decomposition with small overlaps. This new preconditioner has an important merit: its construction and efficiency do not depend on the concrete form of the considered elliptic-type equations. We apply the proposed preconditioner to solve the linear elasticity problems and Maxwell’s equations in three dimensions. Numerical results show that the convergence rate of PCG method with the preconditioner is nearly optimal, and also robust with respect to the (possibly large) jumps of the coefficients in the considered equations.
Similar content being viewed by others
References
Bramble, J., Pasciak, J., Schatz, A.: The construction of preconditioners for elliptic problems by substructuring, IV. Math. Comp. 53, 1–24 (1989)
Brenner, S., Sung, L.: BDDC And FETI-DP without matrices or vectors. Comput. Methods Appl. Mech. Engrg. 196, 1429–1435 (2007)
Cai, M., Pavarino, L. F., Widlund, O. B.: Overlapping Schwarz methods with a standard coarse space for almost incompressible elasticity. SIAM J. Sci. Comput. 37(2), 811–830 (2015)
Cai, X.: An additive Schwarz algorithms for parabolic convection-diffusion equation. Numer. Math. 601991(1), 41–61 (1991)
Cai, X.: The use of pointwise interpolation in domain decomposition methods with nonnested meshes. SIAM J. Sci. Comput. 16, 250–256 (1995)
Cai, X., Sarkis, M.: A restricted additive Schwarz preconditioner for general sparse linear system. SIAM J. Sci. Comput., 21(2), 792–797 (1999). Springer-Verlag, Berlin, Heidelberg, New York, 2008. Third edition
Cessenat, M.: Mathematical Methods in Electromagnetism. World Scientific, River Edge (1998)
Chan, T., Zou, J.: Additive Schwarz domain decomposition methods for elliptic problems on unstructured meshes. Numer. Algorithm. 8, 329–346 (1994)
Chan, T., Smith, B., Zou, J.: Overlapping Schwarz methods on unstructured meshes using non-matching coarse grids. Numer. Math. 73(2), 149–167 (1996)
Chen, X., Hu, Q.: Inexact solvers for saddle-point system arising from domain decomposition of linear elatcity problems in three dimensions. Int. J. Numer. Anal. Model. 8(1), p156–173 (2011)
Chung, E., Kim, H., Widlund, O.: Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin Method. SIAM J. Numer. Anal. 51(1), 47–67 (2013)
Dohrmann, C.: A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25(1), 246–258 (2003)
Dohrmann, C., Widlund, O.: An iterative substructuring algorithm for two-dimensional problems in H(curl). SIAM J. Numer. Anal. 50(3), 1004–1028 (2012)
Dohrmann, C., Widlund, O.: A BDDC Algorithm with Deluxe Scaling for Three-Dimensional H(curl) Problems, Comm. Pure Appl Math. https://doi.org/10.1002/cpa.21574 (2015)
Dryja, M., Galvis, J., Sarkis, M.: BDDC Methods for discontinuous Galerkin discretization of elliptic problems. J. Complexity 23, 715–739 (2007)
Dryja, M., Smith, F., Widlund, O.: Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions. SIAM J. Numer. Anal. 31(6), 1662–1694 (1994)
Dryja, M., Widlund, O. B.: Domain decomposition algorithms with small overlap. SIAM J. Sci. Comput. 15, 604–620 (1994)
Dryja, M., Widlund, O.: Schwarz methods of Neumann-Neumann type for three- dimensional elliptic finite element problems. Comm. Pure Appl. Math. 48, 121–155 (1995)
Dubois, O., Gander, M.: Optimized Schwarz methods for a diffusion problem with discontinuous coefficient, to appear in Numerical Algorithms
Farhat, C., Roux, F.: A method of finite element tearing and interconnecting and its parallel solution algorithm, Internat. J. Numer. Methods Eng. 32, 1205–1227 (1991)
Farhat, C., Lesoinne, M., Pierson, K.: A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl. 7, 687–714 (2000)
Farhat, C., Mandel, J., Roux, F.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods. Appl. Mech. Eng. 115, 365–388 (1994)
Frommer, A., Szyld, D.: An algebraic convergence theory for restricted additive Schwarz methods using weighted max norms. SIAM J. Numer. Anal. 39, 463–479 (2001)
Gander, M.: Optimized Schwarz Methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)
Gander, M., Kwok, F.: Best Robin parameters for optimized Schwarz methods at cross points. SIAM J. Sci. Comput. 34, 1849–1879 (2012)
Geuzaine, C., Remacle, J. -F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities[J]. Int. J. Numer. Methods Eng. 79 (11), 1309–1331 (2009)
Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)
Hu, Q., Shi, Z., Yu, D.: Efficient solvers for saddle-point problems arising from domain decompositions with Lagrange multipliers. SIAM J. Numer. Anal. 42 (3), 905–933 (2004)
Hu, Q.: A regularized domain decomposition method with lagrange multiplier. Adv. Comput. Math. 26(4), 367–401 (2007)
Hu, Q., Shu, S., Wang, J.: Nonoverlapping domain decomposition methods with a simple coarse space for elliptic problems. Math. Comput. 79(272), 2059–2078 (2010)
Hu, Q., Shu, S., Zou, J.: A substructuring preconditioner of three-dimensional Maxwell’s equations. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds.) Domain Decomposition Methods in Science and Engineering XX (No. 91 in Lecture Notes in Computational Science and Engineering). Proceedings of the Twentieth International Conference on Domain Decomposition Methods, held at the University of California at San Diego, CA, February 9-13, 2011, pp. 73–84. Springer, Heidelberg-Berlin (2013)
Hu, Q., Zou, J.: A nonoverlapping domain decomposition method for Maxwells equations in three dimensions. SIAM J. Numer. Anal. 41(5), 1682–1708 (2003)
Hu, Q., Zou, J.: Substructuring preconditioners for saddle-point problems arising from Maxwells equations in three dimensions. Math. Comp. 73(245), 35–61 (2004). (electronic)
Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev space. Acta Math. 147(1–2), 71–88 (1981)
Karypis, G.: METIS a Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 5.1.0. University of Minnesota, Department of Computer Science and Engineering, Minneapolis, MN (2013)
Klawonn, A., Widlund, O. B.: A domain decomposition method with Lagrange multipliers and A inexact solvers for linear elasticity. SIAM J. Sci Comput. 22, 1199–1219 (2000)
Klawonn, A., Widlund, O., Dryja, M.: Dual-primal FETI methods for three-dimensional elliptic problems with Heterogeneous coefficients. SIAM J. Numer. Anal. 40, 159–179 (2002)
Klawonn, A., Rheinbach, O., Widlund, O. B.: An analysis of a FETI-DP algorithm on irregular subdomains in the plane. SIAM J. Numer. Anal. 46, 2484–2504 (2008)
Kim, H., Tu, X.: A three-level BDDC algorithm for mortar discretizations. SIAM J. Numer. Anal. 47, 1576–1600 (2009)
Li, J., Widlund, O.: FETI-DP,BDDC,andblockCholeskymethods. Internat. J. Numer. Methods Eng. 66(2), 250C271 (2006). https://doi.org/10.1002/nme.1553
Li, J., Widlund, O.: On the use of inexact subdomain solvers for BDDC algorithms. Comput. Methods Appl. Mech. Eng. 196, 1415–1428 (2007)
Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. 65, 1387–1401 (1996)
Mandel, J., Dohrmann, C.: Convergence of a balancing domain decomposition by constraints and energy minimization, Numer Linear Algebra Appl. (2003)
Mandel, J., Dohrmann, C., Tezaur, R.: An algebraic theory for primal and dual substructuring methods by constraints. Appl. Numer Math. 54, 167–193 (2005)
Monk, P.: Finite element methods for maxwells equations. Oxford University Press, Oxford (2003)
Nécas, J.: Les méthodes directes en théOrie des équations elliptiques. Academia, Prague (1967)
Si, H.: TetGen, A Quality Tetrahedral Mesh Generator and 3D Delaunay Triangulator, Version 1.5.
Smith, B.: An optimal domain decomposition preconditioner for the finite element solution of linear elasticity problems. SIAM J. Sci. Stat. Comput. 13(1), 364–378 (1992)
Toselli, A.: Overlapping Schwarz methods for Maxwells equations in three dimensions. Numer. Math. 86, 733–752 (2000)
Toselli, A.: Dual-primal FETI algorithms for edge finite element approximations in 3D. IMA J. Numer. Anal. 26, 96–130 (2006)
Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory. Springer, Berlin (2005)
Veiga, L., Cho, D., Pavarino, L., Scacchi, S.: Overlapping Schwarz methods for Isogeometric analysis. SIAM J. Numer. Anal. 50, 1394–1416 (2012)
Veiga, L., Pavarino, L., Scacchi, S., Widlund, O., Zampini, S.: Isogeometric BDDC preconditioners with deluxe scaling. SIAM J. Sci. Comput. 36 (3), 1118–1139 (2014)
Xu, J., Zhu, Y.: Uniform convergent multigrid methods for elliptic problems with strongly discontinuous coefficients. M3AS 18, 77–105 (2008)
Xu, J., Zou, J.: Some non-overlapping domain decomposition methods, SIAM Review, 24 (1998)
Author information
Authors and Affiliations
Corresponding authors
Additional information
Communicated by: Jan Hesthaven
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was funded by Natural Science Foundation of China G11571352.
Rights and permissions
About this article
Cite this article
Hu, Q., Hu, S. A substructuring preconditioner with vertex-related interface solvers for elliptic-type equations in three dimensions. Adv Comput Math 45, 1129–1161 (2019). https://doi.org/10.1007/s10444-018-9648-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-018-9648-y
Keywords
- Domain decomposition
- Substructuring preconditioner
- Linear elasticity problems
- Maxwell’s equations
- PCG iteration
- Convergence rate