Abstract
In this paper, we construct and analyze a nonconforming finite volume method (FVM) for solving the elliptic boundary value problems on quadrilateral meshes: the hybrid Wilson FVM. Under the mesh assumption that the underlying mesh is an h2-parallelogram mesh, we show that the scheme possesses first order in the mesh-dependent H1-norm and second order in the L2-norm error estimates, the same optimal convergence orders as those of the corresponding Wilson finite element method (FEM). Numerical results are presented to demonstrate the theoretical results on the convergence order of the method.
Similar content being viewed by others
References
Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)
Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007)
Bi, C., Rui, H.: Uniform convergence of finite volume element method with Crouzeix-Raviart element for non-self-adjoint and indefinite elliptic problems. J. Comput. Appl. Math. 200, 555–565 (2007)
Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)
Chatzipantelidis, P.: A finite volume method based on the Crouzeix-Raviart element for elliptic PDEs in two dimensions. Numer. Math. 82, 409–432 (1999)
Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4021–4043 (2010)
Chen, Z., Li, R., Zhou, A.: A note on the optimal L 2-estimate of the finite volume method. Adv. Comput. Math. 16, 291–303 (2002)
Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problem. Adv. Comput. Math. 37, 191–253 (2012)
Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comp. 84, 599–628 (2015)
Chou, S. -H., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45, 1639–1653 (2007)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Emonot, P.: Methodes de volumes elements finis: Applications Aux Equations De Navier-Stokes Et Resultats De Convergence. Ph.D. Thesis, University of Lyon, Lyon (1992)
Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM Numer. Anal. 39, 1865–1888 (2002)
Faille, I.: A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100(2), 275–290 (1992)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Massachusetts (1985)
Hackbusch, W.: On first and second order box schemes. Computing 41, 277–296 (1989)
Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press World Publishing Corp, Cambridge (1985)
Huang, J., Xi, S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM Numer. Anal. 35, 1762–1774 (1998)
Lazarov, R., Michev, I., Vassilevski, P.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33, 31–55 (1996)
Lesaint, P., Zlámal, M.: Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes. Numer. Math. 36, 33–52 (1980)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
Li, J., Chen, Z.: Optimal l 2, h 1 and l ∞ analysis of finite volume methods for the stationary Navier-Stokes equations with large data. Numer. Math. 1, 75–101 (2014)
Li, R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24, 77–88 (1987)
Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)
Li, Y., Li, R.: Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17, 653–672 (1999)
Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57, 281–299 (1996)
Lin, Y., Yang, M., Zou, Q.: L 2 error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J. Numer. Anal. 53, 2030–2050 (2015)
Lv, J., Li, Y.: L 2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37, 393–416 (2012)
Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50, 2397–2399 (2012)
Nicolaides, R.A., Porsching, T.A., Hall, C.A. Hafez, M., Oshima, K (eds.): Covolume Methods in Computational Fluid Dynamics. Wiley, New York (1995)
Ollivier-Gooch, C., Altena, M.: A high-order-accurate unconstructed mesh finite-volume scheme for the advectionCdiffusion equation. J. Comput. Phys. 181, 729–752 (2002)
Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51, 271–292 (1993)
Shi, Z.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44, 349–361 (1984)
Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Prentice Hall, Englewood Cliffs (2007)
Wang, X., Li, Y.: L 2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Numer. Anal. 54, 2729–2749 (2016)
Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)
Yang, M.: A second-order finite volume element method on quadrilateral meshes for elliptic equations, ESAIM. Math. Model. Numer. Anal. 40, 1053–1068 (2006)
Yang, M., Liu, J., Lin, Y.: Quadratic finite-volume methods for elliptic and parabolic problems on quadrilateral meshes: Optimal-order errors based on Barlow points. IMA J. Numer. Anal. 33, 1342–1364 (2013)
Zhang, Y., Chen, Z.: Nonconforming finite volume methods for second order elliptic boundary value problems. Int. J. Numer. Anal. Mod. 14, 381–404 (2017)
Zhang, Z., Zou, Q.: A family of finite volume schemes of arbitrary order on rectangular meshes. J. Sci. Comput. 58, 308–330 (2014)
Zhang, Z., Zou, Q.: Vertex centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary problems. Numer. Math. 130, 363–393 (2015)
Funding
This work is supported in part by the National Natural Science Foundation of China under grants 11771375, 11771257, and 11571297, by the Shandong Province Natural Science Foundation under grant ZR2018QA003 and ZR2018MA008.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Paul Houston
Rights and permissions
About this article
Cite this article
Zhang, Y., Yang, M. & Chen, C. The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes. Adv Comput Math 45, 429–452 (2019). https://doi.org/10.1007/s10444-018-9623-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-018-9623-7