[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we construct and analyze a nonconforming finite volume method (FVM) for solving the elliptic boundary value problems on quadrilateral meshes: the hybrid Wilson FVM. Under the mesh assumption that the underlying mesh is an h2-parallelogram mesh, we show that the scheme possesses first order in the mesh-dependent H1-norm and second order in the L2-norm error estimates, the same optimal convergence orders as those of the corresponding Wilson finite element method (FEM). Numerical results are presented to demonstrate the theoretical results on the convergence order of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bi, C., Ginting, V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bi, C., Rui, H.: Uniform convergence of finite volume element method with Crouzeix-Raviart element for non-self-adjoint and indefinite elliptic problems. J. Comput. Appl. Math. 200, 555–565 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chatzipantelidis, P.: A finite volume method based on the Crouzeix-Raviart element for elliptic PDEs in two dimensions. Numer. Math. 82, 409–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47, 4021–4043 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z., Li, R., Zhou, A.: A note on the optimal L 2-estimate of the finite volume method. Adv. Comput. Math. 16, 291–303 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problem. Adv. Comput. Math. 37, 191–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Xu, Y., Zhang, Y.: A construction of higher-order finite volume methods. Math. Comp. 84, 599–628 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou, S. -H., Ye, X.: Unified analysis of finite volume methods for second order elliptic problems. SIAM J. Numer. Anal. 45, 1639–1653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  12. Emonot, P.: Methodes de volumes elements finis: Applications Aux Equations De Navier-Stokes Et Resultats De Convergence. Ph.D. Thesis, University of Lyon, Lyon (1992)

    Google Scholar 

  13. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM Numer. Anal. 39, 1865–1888 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faille, I.: A control volume method to solve an elliptic equation on a two-dimensional irregular mesh. Comput. Methods Appl. Mech. Eng. 100(2), 275–290 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Massachusetts (1985)

    MATH  Google Scholar 

  16. Hackbusch, W.: On first and second order box schemes. Computing 41, 277–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press World Publishing Corp, Cambridge (1985)

    Book  MATH  Google Scholar 

  18. Huang, J., Xi, S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM Numer. Anal. 35, 1762–1774 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lazarov, R., Michev, I., Vassilevski, P.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33, 31–55 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lesaint, P., Zlámal, M.: Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes. Numer. Math. 36, 33–52 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  22. Li, J., Chen, Z.: Optimal l 2, h 1 and l analysis of finite volume methods for the stationary Navier-Stokes equations with large data. Numer. Math. 1, 75–101 (2014)

    Article  Google Scholar 

  23. Li, R.: Generalized difference methods for a nonlinear Dirichlet problem. SIAM J. Numer. Anal. 24, 77–88 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, R., Chen, Z., Wu, W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)

    Book  MATH  Google Scholar 

  25. Li, Y., Li, R.: Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17, 653–672 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Liebau, F.: The finite volume element method with quadratic basis functions. Computing 57, 281–299 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, Y., Yang, M., Zou, Q.: L 2 error estimates for a class of any order finite volume schemes over quadrilateral meshes. SIAM J. Numer. Anal. 53, 2030–2050 (2015)

    Article  MATH  Google Scholar 

  28. Lv, J., Li, Y.: L 2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes. Adv. Comput. Math. 37, 393–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lv, J., Li, Y.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50, 2397–2399 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nicolaides, R.A., Porsching, T.A., Hall, C.A. Hafez, M., Oshima, K (eds.): Covolume Methods in Computational Fluid Dynamics. Wiley, New York (1995)

  31. Ollivier-Gooch, C., Altena, M.: A high-order-accurate unconstructed mesh finite-volume scheme for the advectionCdiffusion equation. J. Comput. Phys. 181, 729–752 (2002)

    Article  MATH  Google Scholar 

  32. Schmidt, T.: Box schemes on quadrilateral meshes. Computing 51, 271–292 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shi, Z.: A convergence condition for the quadrilateral Wilson element. Numer. Math. 44, 349–361 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Versteeg, H., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Prentice Hall, Englewood Cliffs (2007)

    Google Scholar 

  35. Wang, X., Li, Y.: L 2 error estimates for high order finite volume methods on triangular meshes. SIAM J. Numer. Anal. 54, 2729–2749 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, J., Zou, Q.: Analysis of linear and quadratic simplicial finite volume methods for elliptic equations. Numer. Math. 111, 469–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, M.: A second-order finite volume element method on quadrilateral meshes for elliptic equations, ESAIM. Math. Model. Numer. Anal. 40, 1053–1068 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, M., Liu, J., Lin, Y.: Quadratic finite-volume methods for elliptic and parabolic problems on quadrilateral meshes: Optimal-order errors based on Barlow points. IMA J. Numer. Anal. 33, 1342–1364 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Y., Chen, Z.: Nonconforming finite volume methods for second order elliptic boundary value problems. Int. J. Numer. Anal. Mod. 14, 381–404 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, Z., Zou, Q.: A family of finite volume schemes of arbitrary order on rectangular meshes. J. Sci. Comput. 58, 308–330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Z., Zou, Q.: Vertex centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary problems. Numer. Math. 130, 363–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China under grants 11771375, 11771257, and 11571297, by the Shandong Province Natural Science Foundation under grant ZR2018QA003 and ZR2018MA008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Zhang.

Additional information

Communicated by: Paul Houston

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, M. & Chen, C. The hybrid Wilson finite volume method for elliptic problems on quadrilateral meshes. Adv Comput Math 45, 429–452 (2019). https://doi.org/10.1007/s10444-018-9623-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9623-7

Keywords

Mathematics Subject Classification (2010)

Navigation