Abstract
Given a finite sequence of vectors \(\mathcal F_{0}\) in ℂd we describe the spectral and geometrical structure of optimal frame completions of \(\mathcal F_{0}\) obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to a general convex potential. In particular, our analysis includes the so-called Mean Square Error (MSE) and the Benedetto-Fickus’ frame potential. On a first step, we reduce the problem of finding the optimal completions to the computation of the minimum of a convex function in a convex compact polytope in ℝd. As a second step, we show that there exists a finite set (that can be explicitly computed in terms of a finite step algorithm that depends on \(\mathcal F_{0}\) and the sequence of prescribed norms) such that the optimal frame completions with respect to a given convex potential can be described in terms of a distinguished element of this set. As a byproduct we characterize the cases of equality in Lidskii’s inequality from matrix theory.
Similar content being viewed by others
References
Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur-Horn theorem for operators and frames with prescribed norms and frame operator. Illinois J. Math. 51, 537–560 (2007)
Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2–4), 357–385 (2003)
Bhatia, R.: Matrix Analysis. Springer, Berlin-Heildelberg-New York (1997)
Bodmann, B.G.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22(3), 274–285 (2007)
Bodmann, B.G., Kribs, D.W., Paulsen, V.I.: Decoherence-insensitive quantum communication by optimal C ∗-encoding. IEEE Trans Inf. Theory 53, 4738–4749 (2007)
Bodmann, B.G., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005)
Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.K.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35(1), 52–73 (2013)
Calderbank, R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35, 1–31 (2011)
Casazza, P.G.: The art of frame theory. Taiwanese J. Math. 4(2), 129–201 (2000)
Casazza, P.G.: Custom building finite frames. In: Wavelets, Frames and Operator Theory, Contemporary Mathematics Social, vol. 345, pp. 61–81. Providence (2004)
Casazza, P.G., Fickus, M.: Minimizing fusion frame potential. Acta Appl. Math. 107(1–3), 7–24 (2009)
Casazza, P.G., Leon, M.T.: Existence and construction of finite frames with a given frame operator. Int. J. Pure Appl. Math. 63(2), 149–157 (2010)
Casazza, P.G., Fickus, M., Kovacevic, J., Leon, M.T., Tremain, J.C.: A physical interpretation of tight frames. Harmonic analysis and applications. pp. 51–76. Applied Numerical Harmonic Analysis, Birkhäuser, Boston (2006)
Casazza, P.G., Kovacevic, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003)
Christensen, O.: An introduction to frames and Riesz bases. pp. xxii+440. Applied Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston (2003)
Dhillon, I.S., Heath, Jr., RW, Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27(1), 61–71 (2005)
Dykema, K., Freeman, D., Kornelson, K., Larson, D., Ordower, M., Weber, E.: Ellipsoidal tight frames projection decomposition of operators. Illinois J. Math. 48, 477–489 (2004)
Feng, D.J., Wang, L., Wang, Y.: Generation of finite tight frames by Householder transformations. Adv. Comput. Math. 24, 297–309 (2006)
Fickus, M., Mixon, D.G., Poteet, M.J.: Frame completions for optimally robust reconstruction. Proc. SPIE 8138(1), 1–8 (2011)
Fickus, M., Johnson, B.D., Kornelson, K., Okoudjou, K.A.: Convolutional frames and the frame potential. Appl. Comput. Harmon. Anal. 19(1), 77–91 (2005)
Han, D., Larson, D.R.: Frames, bases and group representations.Mem. Amer. Math. Soc. 147(697), x+94 (2000)
Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)
Johnson, B.D., Okoudjou, K.A.: Frame potential and finite abelian groups. Radon transforms, geometry, and wavelets. vol. 464, pp. 137–148. Contemporary Mathematics, American Mathematical Society, Providence (2008)
Klyachko, A.: Stable bundles, representation theory and Hermitian operators. Selecta Math. (N.S.) 4(3), 419–445 (1998)
Kornelson, K.A., Larson, D.R.: Rank-one decomposition of operators and construction of frames. Wavelets, frames and operator theory. vol. 345, pp. 203–214. Contemporary Mathematics, American Mathematical Society: Providence (2004)
Leng, J., Han, D.: Optimal dual frames for erasures II. Linear Algebra Appl. 435, 1464–1472 (2011)
Lopez, J., Han, D.: Optimal dual frames for erasures. Linear Algebra Appl. 432, 471–482 (2010)
Massey, P., Ruiz, M.A.: Tight frame completions with prescribed norms. Sample Theory Sig. Image Process 7(1), 1–13 (2008)
Massey, P., Ruiz, M.: Minimization of convex functionals over frame operators. Adv. Comput. Math. 32, 131–153 (2010)
Massey, P., Ruiz, M., Stojanoff, D.: The structure of minimizers of the frame potential on fusion frames. J. Fourier Anal. Appl. 16(4), 514–543 (2010)
Massey, P., Ruiz, M., Stojanoff, D.: Duality in reconstruction systems. Linear Algebra Appl. 436, 447–464 (2012)
Massey, P., Ruiz, M., Stojanoff, D.: Optimal dual frames and frame completions for majorization. Appl. Comput. Harmon. Anal. 34(2), 201–223 (2013)
Massey, P., Ruiz, M., Stojanoff, D.: Optimal completions of a frame, preprint (available at arXiv:1206.3588) (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Yang Wang
Rights and permissions
About this article
Cite this article
Massey, P.G., Ruiz, M.A. & Stojanoff, D. Optimal frame completions. Adv Comput Math 40, 1011–1042 (2014). https://doi.org/10.1007/s10444-013-9339-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-013-9339-7