[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Optimal frame completions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Given a finite sequence of vectors \(\mathcal F_{0}\) in ℂd we describe the spectral and geometrical structure of optimal frame completions of \(\mathcal F_{0}\) obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to a general convex potential. In particular, our analysis includes the so-called Mean Square Error (MSE) and the Benedetto-Fickus’ frame potential. On a first step, we reduce the problem of finding the optimal completions to the computation of the minimum of a convex function in a convex compact polytope in ℝd. As a second step, we show that there exists a finite set (that can be explicitly computed in terms of a finite step algorithm that depends on \(\mathcal F_{0}\) and the sequence of prescribed norms) such that the optimal frame completions with respect to a given convex potential can be described in terms of a distinguished element of this set. As a byproduct we characterize the cases of equality in Lidskii’s inequality from matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antezana, J., Massey, P., Ruiz, M., Stojanoff, D.: The Schur-Horn theorem for operators and frames with prescribed norms and frame operator. Illinois J. Math. 51, 537–560 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Benedetto, J.J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2–4), 357–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bhatia, R.: Matrix Analysis. Springer, Berlin-Heildelberg-New York (1997)

    Book  Google Scholar 

  4. Bodmann, B.G.: Optimal linear transmission by loss-insensitive packet encoding. Appl. Comput. Harmon. Anal. 22(3), 274–285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodmann, B.G., Kribs, D.W., Paulsen, V.I.: Decoherence-insensitive quantum communication by optimal C -encoding. IEEE Trans Inf. Theory 53, 4738–4749 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bodmann, B.G., Paulsen, V.I.: Frames, graphs and erasures. Linear Algebra Appl. 404, 118–146 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cahill, J., Fickus, M., Mixon, D.G., Poteet, M.J., Strawn, N.K.: Constructing finite frames of a given spectrum and set of lengths. Appl. Comput. Harmon. Anal. 35(1), 52–73 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Calderbank, R., Casazza, P.G., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35, 1–31 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Casazza, P.G.: The art of frame theory. Taiwanese J. Math. 4(2), 129–201 (2000)

    MATH  MathSciNet  Google Scholar 

  10. Casazza, P.G.: Custom building finite frames. In: Wavelets, Frames and Operator Theory, Contemporary Mathematics Social, vol. 345, pp. 61–81. Providence (2004)

  11. Casazza, P.G., Fickus, M.: Minimizing fusion frame potential. Acta Appl. Math. 107(1–3), 7–24 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Casazza, P.G., Leon, M.T.: Existence and construction of finite frames with a given frame operator. Int. J. Pure Appl. Math. 63(2), 149–157 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Casazza, P.G., Fickus, M., Kovacevic, J., Leon, M.T., Tremain, J.C.: A physical interpretation of tight frames. Harmonic analysis and applications. pp. 51–76. Applied Numerical Harmonic Analysis, Birkhäuser, Boston (2006)

  14. Casazza, P.G., Kovacevic, J.: Equal-norm tight frames with erasures. Adv. Comput. Math. 18(2–4), 387–430 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Christensen, O.: An introduction to frames and Riesz bases. pp. xxii+440. Applied Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston (2003)

  16. Dhillon, I.S., Heath, Jr., RW, Sustik, M.A., Tropp, J.A.: Generalized finite algorithms for constructing Hermitian matrices with prescribed diagonal and spectrum. SIAM J. Matrix Anal. Appl. 27(1), 61–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dykema, K., Freeman, D., Kornelson, K., Larson, D., Ordower, M., Weber, E.: Ellipsoidal tight frames projection decomposition of operators. Illinois J. Math. 48, 477–489 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Feng, D.J., Wang, L., Wang, Y.: Generation of finite tight frames by Householder transformations. Adv. Comput. Math. 24, 297–309 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fickus, M., Mixon, D.G., Poteet, M.J.: Frame completions for optimally robust reconstruction. Proc. SPIE 8138(1), 1–8 (2011)

    Google Scholar 

  20. Fickus, M., Johnson, B.D., Kornelson, K., Okoudjou, K.A.: Convolutional frames and the frame potential. Appl. Comput. Harmon. Anal. 19(1), 77–91 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Han, D., Larson, D.R.: Frames, bases and group representations.Mem. Amer. Math. Soc. 147(697), x+94 (2000)

    MathSciNet  Google Scholar 

  22. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Johnson, B.D., Okoudjou, K.A.: Frame potential and finite abelian groups. Radon transforms, geometry, and wavelets. vol. 464, pp. 137–148. Contemporary Mathematics, American Mathematical Society, Providence (2008)

  24. Klyachko, A.: Stable bundles, representation theory and Hermitian operators. Selecta Math. (N.S.) 4(3), 419–445 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kornelson, K.A., Larson, D.R.: Rank-one decomposition of operators and construction of frames. Wavelets, frames and operator theory. vol. 345, pp. 203–214. Contemporary Mathematics, American Mathematical Society: Providence (2004)

  26. Leng, J., Han, D.: Optimal dual frames for erasures II. Linear Algebra Appl. 435, 1464–1472 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lopez, J., Han, D.: Optimal dual frames for erasures. Linear Algebra Appl. 432, 471–482 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Massey, P., Ruiz, M.A.: Tight frame completions with prescribed norms. Sample Theory Sig. Image Process 7(1), 1–13 (2008)

    MATH  MathSciNet  Google Scholar 

  29. Massey, P., Ruiz, M.: Minimization of convex functionals over frame operators. Adv. Comput. Math. 32, 131–153 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Massey, P., Ruiz, M., Stojanoff, D.: The structure of minimizers of the frame potential on fusion frames. J. Fourier Anal. Appl. 16(4), 514–543 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Massey, P., Ruiz, M., Stojanoff, D.: Duality in reconstruction systems. Linear Algebra Appl. 436, 447–464 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Massey, P., Ruiz, M., Stojanoff, D.: Optimal dual frames and frame completions for majorization. Appl. Comput. Harmon. Anal. 34(2), 201–223 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Massey, P., Ruiz, M., Stojanoff, D.: Optimal completions of a frame, preprint (available at arXiv:1206.3588) (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano A. Ruiz.

Additional information

Communicated by: Yang Wang

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massey, P.G., Ruiz, M.A. & Stojanoff, D. Optimal frame completions. Adv Comput Math 40, 1011–1042 (2014). https://doi.org/10.1007/s10444-013-9339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-013-9339-7

Keywords

Mathematics Subject Classifications (2010)

Navigation