[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An approximation of Daubechies wavelet matrices by perfect reconstruction filter banks with rational coefficients

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

It is described how the coefficients of Daubechies wavelet matrices can be approximated by rational numbers in such a way that the perfect reconstruction property of the filter bank be preserved exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelhia, PA (1992)

    Book  MATH  Google Scholar 

  3. Delsarte, P., Gelin, Y., Kamp, Y.: A simple approach to spectral factorization. IEEE Trans. Circuits Syst. 25, 943–946 (1978)

    Article  MATH  Google Scholar 

  4. Ephremidze, L., Janashia, G., Lagvilava, E.: On the factorization of unitary matrix-functions. Proc. A. Razmadze Math. Inst. 116, 101–106 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Ephremidze, L., Janashia, G., Lagvilava, E.: A simple proof of matrix-valued Fejér–Riesz theorem. J. Fourier Anal. Appl. 15, 124–127 (2009). doi:10.1007/s00041-008-9051-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Ephremidze, L., Lagvilava, E.: On parameterization of compact wavelet matrices. Bull. Georgian Nat. Acad. Sci. 2(4), 23–27 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Janashia, G., Lagvilava, E.: A method of approximate factorization of positive definite matrix functions. Stud. Math. 137(1), 93–100 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Janashia, G., Lagvilava, E., Ephremidze, L.: A new method of matrix spectral factorization. IEEE Trans. Inf. Theory 57(4), 2318–2326 (2011). doi:10.1109/TIT.2011.2112233

    Article  MathSciNet  Google Scholar 

  9. Mallat, S.: A Wavelet Tour of Signal Processing. Academic, New York (1998)

    MATH  Google Scholar 

  10. Resnikoff, H.L., Wells, R.O.: Wavelet Analysis. Springer (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gamkrelidze.

Additional information

Communicated by Charles Micchelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ephremidze, L., Gamkrelidze, A. & Lagvilava, E. An approximation of Daubechies wavelet matrices by perfect reconstruction filter banks with rational coefficients. Adv Comput Math 38, 147–158 (2013). https://doi.org/10.1007/s10444-011-9232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9232-1

Keywords

Mathematics Subject Classification (2010)

Navigation