Abstract
It is described how the coefficients of Daubechies wavelet matrices can be approximated by rational numbers in such a way that the perfect reconstruction property of the filter bank be preserved exactly.
Similar content being viewed by others
References
Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)
Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelhia, PA (1992)
Delsarte, P., Gelin, Y., Kamp, Y.: A simple approach to spectral factorization. IEEE Trans. Circuits Syst. 25, 943–946 (1978)
Ephremidze, L., Janashia, G., Lagvilava, E.: On the factorization of unitary matrix-functions. Proc. A. Razmadze Math. Inst. 116, 101–106 (1998)
Ephremidze, L., Janashia, G., Lagvilava, E.: A simple proof of matrix-valued Fejér–Riesz theorem. J. Fourier Anal. Appl. 15, 124–127 (2009). doi:10.1007/s00041-008-9051-z
Ephremidze, L., Lagvilava, E.: On parameterization of compact wavelet matrices. Bull. Georgian Nat. Acad. Sci. 2(4), 23–27 (2008)
Janashia, G., Lagvilava, E.: A method of approximate factorization of positive definite matrix functions. Stud. Math. 137(1), 93–100 (1999)
Janashia, G., Lagvilava, E., Ephremidze, L.: A new method of matrix spectral factorization. IEEE Trans. Inf. Theory 57(4), 2318–2326 (2011). doi:10.1109/TIT.2011.2112233
Mallat, S.: A Wavelet Tour of Signal Processing. Academic, New York (1998)
Resnikoff, H.L., Wells, R.O.: Wavelet Analysis. Springer (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Charles Micchelli.
Rights and permissions
About this article
Cite this article
Ephremidze, L., Gamkrelidze, A. & Lagvilava, E. An approximation of Daubechies wavelet matrices by perfect reconstruction filter banks with rational coefficients. Adv Comput Math 38, 147–158 (2013). https://doi.org/10.1007/s10444-011-9232-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-011-9232-1