[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Robin-type non-overlapping domain decomposition procedure for second order elliptic problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This article deals with the analysis of an iterative non-overlapping domain decomposition (DD) method for elliptic problems, using Robin-type boundary condition on the inter-subdomain boundaries, which can be solved in parallel with local communications. The proposed iterative method allows us to relax the continuity condition for Lagrange multipliers on the inter-subdomain boundaries. In order to derive the corresponding discrete problem, we apply a non-conforming Galerkin method using lowest order Crouzeix–Raviart elements. The convergence of the iterative scheme is obtained by proving that the spectral radius of the matrix associated with the fixed point iterations is less than 1. Parallel computations have been carried out and the numerical experiments confirm the theoretical results established in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberger, A., Glowinski, R., Tran, Q.H.: A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change. SIAM J. Numer. Anal. 34, 603–639 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brenner, S.C.: Poincarè Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chan, T.F., Mathew, T.: Domain decomposition algorithms. Acta Numer. 3, 61–143 (1994)

    Article  MathSciNet  Google Scholar 

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)

    MATH  Google Scholar 

  5. Crouzeix, M., Raviart, P.A.: Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer. 7, 33–76 (1973)

    MathSciNet  Google Scholar 

  6. Deng, Q.: An analysis for a non-overlapping domain decomposition iterative procedure. SIAM J. Sci. Comput. 18, 1517–1525 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng, Q.: A non-overlapping domain decomposition method for nonconforming finite element problems. Commun. Pure Appl. Anal. 2, 295–306 (2003)

    Google Scholar 

  8. Despres, B.: Domain decomposition method and Helmholtz problem. In: Cohen, G., Halpern, L., Joly, P. (eds.) Mathematical and Numerical Aspects of Wave Propagation Phenomena, pp. 44–52. SIAM, Philadelphia (1991)

    Google Scholar 

  9. Despres, B., Joly, P., Roberts, J.E.: A domain decomposition method for harmonic Maxwell equations. In: Iterative Methods in Linear Algebra, pp. 475–484. North Holland, Amsterdam (1992)

    Google Scholar 

  10. Douglas, Jr., J., Paes Leme, P.J., Roberts, J.E., Wang, J.: A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numer. Math. 65, 95–108 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Douglas, Jr., J., Santos, J.E., Sheen, D., Ye, X.: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. In: Math. Modeling and Numer. Analysis, M2AN, pp. 747–770 (1999)

  12. Gander, M.J., Halpern, L., Nataf, F.: Optimized Schwarz methods. In: Proceedings of the Twelfth International Conference on Domain Decomposition Methods, pp. 15–28. Chiba, Japan (2001)

  13. Gander, M.J., Magoules, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24, 38–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44, 699–731 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lions, P.L.: On the Schwarz alternating method III: a variant for non-overlapping subdomains. In: Chan, T.F., Glowinski, R., Perianx, J., Widlund, O.B. (eds.) Proceedings of the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 202–223. SIAM, Philadelphia (1990)

    Google Scholar 

  16. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, New York (1972)

    Google Scholar 

  17. Qin, L., Xu, X.: On a parallel Robin-type non-overlapping domain decomposition method. SIAM J. Numer. Anal. 44, 2539–2558 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Qin, L., Xu, X.: Optimized Schwarz methods with Robin transmission conditions for parabolic problems. SIAM J. Sci. Comput. 31, 608–623 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Clarendon, Oxford (1999)

    MATH  Google Scholar 

  20. Sarkis, M.: Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using nonconforming elements. Numer. Math. 77, 383–406 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Smith, B.F., Bjorstad, P.E., Gropp, W.D.: Domain Decomposition Parallel Multilevel Methods for Partial Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  22. Toselli, A., Widlund, O.: Domain Decomposition Methods Algorithms and Theory. Springer, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neela Nataraj.

Additional information

Communicated by Aihui Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, D., Shalini, B., Nataraj, N. et al. A Robin-type non-overlapping domain decomposition procedure for second order elliptic problems. Adv Comput Math 34, 339–368 (2011). https://doi.org/10.1007/s10444-010-9157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-010-9157-0

Keywords

Mathematics Subject Classifications (2010)

Navigation