Abstract
This study introduces a new method for minimally invasive treatment of cancer—the ablation of undesirable tissue through the use of irreversible electroporation. Electroporation is the permeabilization of the cell membrane due to an applied electric field. As a function of the field amplitude and duration, the permeabilization can be reversible or irreversible. Over the last decade, reversible electroporation has been intensively pursued as a very promising technique for the treatment of cancer. It is used in combination with cytotoxic drugs, such as bleomycin, in a technique known as electrochemotherapy. However, irreversible electroporation was completely ignored in cancer therapy. We show through mathematical analysis that irreversible electroporation can ablate substantial volumes of tissue, comparable to those achieved with other ablation techniques, without causing any detrimental thermal effects and without the need of adjuvant drugs. This study suggests that irreversible electroporation may become an important and innovative tool in the armamentarium of surgeons treating cancer.
Similar content being viewed by others
References
Baker, P. F., and D. E. Knight. Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature 276:620–622, 1978.
Boone, K., D. Barber, and B. Brown. Review—Imaging with electricity: Report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 21:201–232, 1997.
Bown, S. G. Phototherapy of tumors. World J. Surgery 7:700–709, 1983.
Carney, C. K. Mathematical models of bioheat transfer. In: Bioengineering Heat Transfer, edited by Y. I. Choi. Boston: Academic Press, 1992, pp. 19–152.
Chang, D. C., B. M. Chassy, J. A. Saunders, and A. E. Sowers. Guide to Electroporation and Electrofusion. San Diego, CA: Academic Press, 1992, 569 pp.
Crowley, J. M. Electrical breakdown of biomolecular lipid membranes as an electromechanical instability. Biophys. J. 13:711–724, 1973.
Davalos, R. V., B. Rubinsky, and D. M. Otten. A feasibility study for electrical impedance tomography as a means to monitor tissue electroporation for molecular medicine. IEEE Trans. Biomed. Eng. 49:400–403, 2002.
Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61:99–107, 2003.
Davalos, R. V., D. M. Otten, L. M. Mir, and B. Rubinsky. Electrical impedance tomography for imaging tissue electroporation. IEEE Trans. Biomed. Eng. 51(5):761–767, 2004.
Deng, Z. S., and J. Liu. Blood perfusion-based model for characterizing the temperature fluctuations in living tissue. Phys. A STAT Mech. Appl. 300:521–530, 2001.
Diller, K. R. Modeling of bioheat transfer processes at high and low temperatures. In: Bioengineering Heat Transfer, edited by Y. I. Choi. Boston: Academic Press, 1992, pp. 157–357.
Duck, F. A. Physical Properties of Tissues: A Comprehensive Reference Book. San Diego: Academic Press, 1990.
Eto, T. K., and B. Rubinsky. Bioheat transfer. In: Introduction to Bioengineering, edited by S. A. Berger, W. Goldsmith, and E. R. Lewis. Oxford: Oxford Press, 1996.
Foster, R. S., R. Bihrle, N. T. Sanghvi, F. J. Fry, J. P. Donohue. High-intensity focused ultrasound in the treatment of prostatic disease. Eur. Urol. 23:44–47, 1993.
Gauger, B., and F. W. Bentrup. A study of dielectric membrane breakdown in the Fucus egg. J. Membr. Biol. 48:249–264, 1979.
Gothelf, A., L. M. Mir, and J. Gehl. Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29:371–387, 2003.
Heller, R., R. Gilbert, and M. J. Jaroszeski. Clinical applications of electrochemotherapy. Adv. Drug Deliv. Rev. 35:119–129, 1999.
Henriques, F. C., and A. R. Moritz. Studies in thermal injuries: The predictability and the significance of thermally induced rate processes leading to irreversible epidermal damage. Arch. Pathol. 43:489–502, 1947.
Jaroszeski, M. J., R. Gilbert, C. Nicolau, and R. Heller. In vivo gene delivery by electroporation. Adv. Applic. Electrochem. 35:131–137, 1999.
Joshi, R. P., and K. H. Schoenbach. Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions. Phys. Rev. E 66:052901:1–4, 2002.
Kinosita, K., Jr., and T. Y. Tsong. Hemolysis of human erythrocytes by a transient electric field. Proc. Natl. Acad. Sci. U.S.A. 74:1923–1927, 1977.
Lynn, J. G., R. Zwemer, A. J. Chick, and A. E. Miller. A new method for the generation of use of focused ultrasound in experimental biology. J. Gen. Physiol. 26:179–193, 1942.
Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta 1523:73–83, 2000.
Mir, L. M. Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53:1–10, 2001.
Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.
Mir, L. M., S. Orlowski, J. Belehradek Jr., and C. Paoletti. Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur. J. Cancer 27:68–72, 1991.
Mir, L. M., L. F. Glass, G. Sersa, J. Teissie, C. Domenge, D. Miklavcic, M. J. Jaroszeski, S. Orlowski, D. S. Reintgen, Z. Rudolf, M. Belehradek, R. Gilbert, M. P. Rols, J. Belehradek, J. M. Bachaud, R. Deconti, B. Stabuc, M. Cemazar, P. Coninx, and R. Heller. Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy. Br. J. Cancer 77:2336–2342, 1998.
Neumann, E., and K. Rosenheck. Permeability changes induced by electric impulses in vesicular membranes. J. Membr. Biol. 10:279–290, 1972.
Neumann, E., A. E. Sowers, and C. A. Jordan. Electroporation and Electrofusion in Cell Biology. New York: Plenum Press, 1989.
Neumann, E., M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider. Gene transfer into mouse lyoma cells by electroporation in high electric fields. J. EMBO 1:841–845, 1982.
Okino, M., and H. Mohri. Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. 78:1319–1321, 1987.
Onik, G., B. Rubinsky, and E. Al. Ultrasound-guided hepatic cryosurgery in the treatment of metastatic colon carcinoma. Cancer 67:901–907, 1991.
Onik, G. M., J. K. Cohen, G. D. Reyes, and B. Rubinsky. Transrectal ultrasound-guided percutaneous radical cryosurgical ablation of the prostate. Cancer 72:1291–1299, 1993.
Organ, L. W. Electrophysiological principles of radiofrequency lesion making. Appl. Neurophysiol. 39:69–76, 1976.
Pennes, H. H. Analysis of tissue and arterial blood flow temperatures in the resting forearm. J. Appl. Physiol. 1:93–122, 1948.
Rowan, N. J., S. J. Macgregor, J. G. Anderson, R. A. Fouracre, and O. Farish. Pulsed electric field inactivation of diarrhoeagenic Bacillus cereus through irreversible electroporation. Lett. Appl. Microbiol. 31:110–114, 2000.
Rubinsky, B. Cryosurgery, In: Annual Review of Biomedical Engineering v. 2, edited by M. L. Yarmush, K. R. Diller, M. T. Toner, Palo Alto: Annual Reviews, pp. 157–187, 2002.
Shiina, S., K. Tagawa, Y. Niwa, and E. Al. Percutaneous ethanol injection therapy for hepatocellular carcinoma: Results in 146 patients. Am. J. Roentgenol. 160:1023–1028, 1993.
Somiari, S., J. Glasspool-Malone, J. J. Drabick, R. A. Gilbert, R. Heller, M. J. Jaroszeski, and R. W. Malone. Theory and in vivo application of electroporative gene delivery. Molec. Ther. 2:178–187, 2000.
Suzuki, T., B. Shin, K. Fujikura, T. Matsuzaki, and K. Takata. Direct gene transfer into rat liver cells by in vivo electroporation. FEBS Lett. 425:436–440, 1998.
Tieleman, D. P., H. Leontiadau, A. E. Mark, and S. J. Marrink. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J. Am. Chem. Soc. 125:6382–6383, 2003.
Vernhes, M. C., A. Benichou, P. Pernin, P. A. Cabanes, and J. Teissie. Elimination of free-living amoebae in fresh water with pulsed electric fields. Water Res. 36:3429–3438, 2002.
Weaver, J. C., and Y. A. Chizmadzhev. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41:135–160, 1996.
Zimmermann, U., J. Vienken, and G. Pilwat. Dielectric breakdown of cell membranes. Biophys. J. 14:881–899, 1974.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Davalos, R.V., Mir, L.M. & Rubinsky, B. Tissue Ablation with Irreversible Electroporation. Ann Biomed Eng 33, 223–231 (2005). https://doi.org/10.1007/s10439-005-8981-8
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10439-005-8981-8