Abstract
Numerous paleolandslide dams are distributed along the upper reaches of the Jinsha River under the special geological setting of the Tibetan Plateau. A field investigation revealed that the Rongcharong paleoriver-blocking event formed one such dam. Optically stimulated luminescence results show that the paleolandslide occurred in 2.2 ± 0.1 Ka BP and blocked the Jinsha River for approximately 800 years. The failure mechanism of the paleolandslide is the steeply inclined antidip rock topple under self-gravity. A distinct element method-based numerical landslide model is constructed using the topography restoration method. The parameter sensitivity results show that microparameters have important effects on the peak particle velocity and morphology of landslide dams. The optimal microparameters are determined by adopting back analysis based on the geomorphic parameters of the landslide dam. The numerical simulation results show that the sliding process lasts for 65 s; the corresponding peak velocity and runout distance are 28.2 m/s and 742.5 m, respectively; and the landslide forms a dam 1129 m long, 967 m wide, and 105 m high. The genetic mechanism of the paleolandslide is reflected in the calibration process of the microparameters and load type of the numerical simulation. Finally, the implications of microparameters for the longevity of the landslide dam are presented.
Similar content being viewed by others
References
Bao Y, Sun X, Zhou X, Zhang Y, Liu Y (2021) Some numerical approaches for landslide river blocking: introduction, simulation, and discussion. Landslides 18:3907–3922. https://doi.org/10.1007/s10346-021-01725-2
Bao Y, Zhai S, Chen J, Xu P, Sun X, Zhan J, Zhang W, Zhou X (2020) The evolution of the Samaoding paleolandslide river blocking event at the upstream reaches of the Jinsha River Tibetan Plateau. Geomorphology 351. https://doi.org/10.1016/j.geomorph.2019.106970
Cao C, Wang Q, Chen J, Ruan Y, Zheng L, Song S, Niu C (2016) Landslide susceptibility mapping in vertical distribution law of precipitation area: case of the Xulong hydropower station reservoir, Southwestern China. Water 8. https://doi.org/10.3390/w8070270
Cao W, Li W, Tang B, Deng G, Li J (2017) PFC study on building of 2D and 3D landslide models. J Eng Geol (in Chinese with English abstract). https://doi.org/10.13544/j.cnki.jeg.2017.02.024
Castro-Filgueira U, Alejano LR, Arzúa J, Ivars DM (2017) Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks. Procedia Eng 191:488–495. https://doi.org/10.1016/j.proeng.2017.05.208
Chang YL, Chu BL, Li SS (2003) Numerical simulation of gravel deposits using multicircle granule model. J Chin Inst Eng 26(5):681–694. https://doi.org/10.1080/02533839.2003.9670821
Chen H, Lee C (2000) Numerical simulation of debris flows. Can Geotech J 37:146–160. https://doi.org/10.1139/cgj-37-1-146
Chen J, Dai F, Lv T, Cui Z (2013) Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages. Quatern Int 298:107–113. https://doi.org/10.1016/j.quaint.2012.09.018
Chen J, Li H (2016) Genetic mechanism and disasters feature of complicated structural rock mass along the rapidly uplift section at the upstream of Jinsha River. J Jilin Univ (Earth Sci Ed) 46(4):1153–1167 (in Chinese with English abstract). https://doi.org/10.13278/j.cnki.jjuese.201604202
Chen J, Zhou W, Cui Z, Li W, Wu S, Ma J (2018) Formation process of a large paleolandslide-dammed lake at Xuelongnang in the upper Jinsha River, SE Tibetan Plateau: constraints from OSL and 14C dating. Landslides 15:2399–2412. https://doi.org/10.1007/s10346-018-1056-3
Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26. https://doi.org/10.1016/j.geomorph.2006.12.022
Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geol Soc Am Bull 100(7):1054–1068. https://doi.org/10.1130/0016-7606
Cundall PA (1971) A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings of the Symposium of the International Society of Rock Mechanics, vol. 1, Nancy, France, pp. II-8
Cundall P, Strack O (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65. https://doi.org/10.1680/geot.1980.30.3.331
Davies T, McSaveney M (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109:67–79. https://doi.org/10.1016/j.enggeo.2008.11.004
Dong JJ, Tung YH, Chen CC, Liao JJ, Pan YW (2009) Discriminant analysis of the geomorphic characteristics and stability of landslide dams. Geomorphology 110:162–171. https://doi.org/10.1016/j.geomorph.2009.04.004
Dufresne A, Ostermann M, Preusser F (2018) River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria). Geomorphology 310:153–167. https://doi.org/10.1016/j.geomorph.2018.03.012
Ermini L, Casagli N (2003) Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Earth Surf Proc and Land 28:31–47. https://doi.org/10.1002/esp.424
Fan X, Dufresne A, Siva Subramanian S et al (2020) The formation and impact of landslide dams - state of the art. Earth-Sci Rev 203. https://doi.org/10.1016/j.earscirev.2020.103116
Fan X, Xu Q, Van Westen C, Huang R, Tang R (2017) Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake. Geoenviron Disasters 4:12. https://doi.org/10.1186/s40677-017-0079-8
Ge Y, Tang H, Ez Eldin M, Chen H, Zhong P, Zhang L, Fang K (2018) Deposit characteristics of the Jiweishan rapid long-runout landslide based on field investigation and numerical modeling. Bull Eng Geol Environ 78:4383–4396. https://doi.org/10.1007/s10064-018-1422-3
Giani GP (1992) Rock slope stability analysis. A. A. Balkema, Rotterdam, p 361
Gong M, Qi S, Liu J (2010) Engineering geological problems related to high geo-stresses at the Jinping I Hydropower Station, Southwest China. Bull Eng Geol Environ 69:373–380. https://doi.org/10.1007/s10064-010-0267-1
Guo J, Xu G, Jing H, Kuang T (2013) Fast determination of meso-level mechanical parameters of PFC models. Int J Min Sci Techno 23:157–162. https://doi.org/10.1016/j.ijmst.2013.03.007
Han X, Chen J, Xu P, Zhan J (2017) A well-balanced numerical scheme for debris flow run-out prediction in Xiaojia Gully considering different hydrological designs. Landslides 14(1):1–10. https://doi.org/10.1007/s10346-017-0850-7
Han XD (2018) Comprehensive analysis and numerical simulation for Qulong landslide dam event in the late Pleistocene. Dissertation, Jilin University.
Hermanns R, Hewitt K, Strom A, Evans S, Dunning S, Scarascia-Mugnozza G (2011) The classification of rockslide dams. In: Natural and Artificial Rockslide Dams. Lecture Notes in Earth Sciences. pp 581–593. https://doi.org/10.1007/978-3-642-04764-0_24
Hu G, Yi C, Liu J et al (2020) Glacial advances and stability of the moraine dam on Mount Namcha Barwa since the last glacial maximum, eastern Himalayan syntaxis. Geomorphology 365. https://doi.org/10.1016/j.geomorph.2020.107246
Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y
Itasca Consulting Group Inc (2016) PFC3D (particle flow code in 3 dimensions) user’s guide
Julian SHK, Eric HYS, Carlos L, Raymond PHL, Raymond CHK (2021) Development and applications of debris mobility models in Hong Kong. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering 174(5):593–610. https://doi.org/10.1680/jgeen.21.00008
Korup O (2004) Geomorphometric characteristics of New Zealand landslide dams. Eng Geol 73:13–35. https://doi.org/10.1016/j.enggeo.2003.11.003
Larsen I, Montgomery D (2012) Landslide erosion coupled to tectonics and river incision. Nat Geosci 5:468–473. https://doi.org/10.1038/NGEO1479
Li T, Xiao X, Li G, Gao Y, Zhou W (1986) The crustal evolution and uplift mechanism of the Qinghai-Tibet plateau. Tectonophysics 127(3):279–289. https://doi.org/10.1016/0040-1951
Li W, Deng G, Cao W, Xu C, Chen J, Lee M (2019) Discrete element modeling of the Hongshiyan landslide triggered by the 2014 Ms 6.5 Ludian earthquake in Yunnan, China. Environ Earth Sci 78:520 https://doi.org/10.1007/s12665-019-8438-2
Li W, Li H, Dai F, Lee L (2012) Discrete element modeling of a rainfall-induced flowslide. Eng Geol 149–150:22–34. https://doi.org/10.1016/j.enggeo.2012.08.006
Li Y, Chen J, Zhou F, Song S, Zhang Y, Gu F, Cao C (2020) Identification of ancient river-blocking events and analysis of the mechanisms for the formation of landslide dams in the Suwalong section of the upper Jinsha River, SE Tibetan Plateau. Geomorphology 368. https://doi.org/10.1016/j.geomorph.2020.107351
Li Z, Chen J, Han M, Li Y, Cao C, Song S, Zhang Y, Yan J (2021) Distribution and evolution of knickpoints along the Layue River, Eastern Himalayan Syntaxis. J Hydrol 603(A):126915. https://doi.org/10.1016/j.jhydrol.2021.126915
Lin C, Lin M (2015) Evolution of the large landslide induced by typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng Geol 197:172–187. https://doi.org/10.1016/j.enggeo.2015.08.022
Linares-Guerrero E, Goujon C, Zenit R (2007) Increased mobility of bidisperse granular avalanches. J Fluid Mech 593:475–504. https://doi.org/10.1017/s0022112007008932
Liu Z, Su L, Zhang C, Iqbal J, Hu B, Dong Z (2020) Investigation of the dynamic process of the Xinmo landslide using the discrete element method. Comput Geotech 123. https://doi.org/10.1016/j.compgeo.2020.103561
Lo CM, Lin ML, Tang CL, Hu JC (2011) A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng Geol 123:22–39. https://doi.org/10.1016/j.enggeo.2011.07.002
Lu C, Tang C, Chan Y, Hu J, Chi C (2014) Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng Geol 183:14–30. https://doi.org/10.1016/j.enggeo.2014.09.007
McDougall S (2016) Landslide runout analysis - current practice and challenges. Can Geotech J 54(5). https://doi.org/10.1139/cgj-2016-0104
Ouyang C, He S, Xu Q, Luo Y, Zhang W (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput Geosci 52:1–10. https://doi.org/10.1016/j.cageo.2012.08.024
Poisel R, Angerer H, Pöllinger M, Kalcher T, Kittl H (2009) Mechanics and velocity of the Lärchberg-Galgenwald landslide (Austria). Eng Geol 109:57–66. https://doi.org/10.1016/j.enggeo.2009.01.002
Potyondy D, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min 41:1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
Preh A, Poisel R (2007) 3D modelling of rock mass falls using the particle flow code PFC3D. Proceedings of the 11th Congress of the International Society for Rock Mechanics
Scaringi G, Fan X, Xu Q et al (2018) Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China). Landslides 15:1359–1375. https://doi.org/10.1007/s10346-018-0953-9
Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286(5441):930–4. https://doi.org/10.1126/science.286.5441.930
Shen D, Shi Z, Peng M, Zhang L, Jiang M (2020) Longevity analysis of landslide dams. Landslides 17(8):1797–1821. https://doi.org/10.1007/s10346-020-01386-7
Shi GH (1988) Discontinuous deformation analysis: a new numerical model for the statics and dynamics of block systems (PhD thesis). University of California, Berkeley.
Su H, Dong M, Hu ZB (2019) Late Miocene birth of the Middle Jinsha River revealed by the fluvial incision rate. Global Planet Change 183:1–8. https://doi.org/10.1016/j.gloplacha.2019.103002
Sun X, Chen J, Han X, Bao Y, Zhan J, Peng W (2019) Application of a GIS-based slope unit method for landslide susceptibility mapping along the rapidly uplifting section of the upper Jinsha River, South-Western China. Bull Eng Geol Environ 79:533–549. https://doi.org/10.1007/s10064-019-01572-5
Sun X, Chen J, Han X, Bao Y, Zhou X, Peng W (2020) Landslide susceptibility mapping along the upper Jinsha River, south-western China: a comparison of hydrological and curvature watershed methods for slope unit classification. Bull Eng Geol Environ 79:4657–4670. https://doi.org/10.1007/s10064-020-01849-0
Tacconi Stefanelli C, Segoni S, Casagli N, Catani F (2016) Geomorphic indexing of landslide dams evolution. Eng Geol 208:1–10. https://doi.org/10.1016/j.enggeo.2016.04.024
Tang C, Hu J, Lin M, Angelier J, Lu C, Chan Y, Chu H (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106:1–19. https://doi.org/10.1016/j.enggeo.2009.02.011
Tang C, Hu J, Lin M, Yuan R, Cheng C (2013) The mechanism of the 1941 Tsaoling landslide, Taiwan: insight from a 2d discrete element simulation. Environ Earth Sci 70:1005–1019. https://doi.org/10.1007/s12665-012-2190-1
Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: transportation research board. National Academy of Sciences, Washington, DC., pp 11–33
Wang H, Liu S, Xu W, Yan L, Qu X, Xie W (2020) Numerical investigation on the sliding process and deposit feature of an earthquake-induced landslide: a case study. Landslides 17:2671–2682. https://doi.org/10.1007/s10346-020-01446-y
Wang S, Xu W, Shi C, Chen H (2017) Run-out prediction and failure mechanism analysis of the Zhenggang deposit in southwestern China. Landslides 14:719–726. https://doi.org/10.1007/s10346-016-0770-y
Wang W, Yin Y, Zhu S, Wang L, Zhang N, Zhao R (2019) Investigation and numerical modeling of the overloading-induced catastrophic rockslide avalanche in Baige, Tibet. China Bull Eng Geo Environ 79(4):1765–1779. https://doi.org/10.1007/s10064-019-01664-2
Wei J, Zhao Z, Xu C, Wen Q (2019) Numerical investigation of landslide kinetics for the recent Mabian landslide (Sichuan, China). Landslides 16:2287–2298. https://doi.org/10.1007/s10346-019-01237-0
Weidinger J (2011) Stability and life span of landslide dams in the Himalayas (India, Nepal) and the Qin Ling Mountains (China). Natural and Artificial Rockslide Dams 133:243–277. https://doi.org/10.1007/978-3-642-04764-0_8
Wu LZ, Zhao DJ, Zhu JD, Peng JB, Zhou Y (2019) A Late Pleistocene river-damming landslide, Minjiang River, China. Landslides 17:433–444. https://doi.org/10.1007/s10346-019-01305-5
Xiang SY, Wang A, Wang GC, Zeng FM, Lu JF, Jiang SS, Chang H, Lin X, Lu YL (2013) Quaternary geology and geomorphology map of Tibetan Plateau and adjacent areas (1:3000000) China university of geosciences press, Wuhan
Yan P, Zhang J, Kong X, Fang Q (2020) Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain. Comput Geotech 122:103511. https://doi.org/10.1016/j.compgeo.2020.103511
Zeng Q, Yuan G, Davies T, Xu B, Wei R, Xue X, Zhang L (2020) 10Be dating and seismic origin of Luanshibao rock avalanche in SE Tibetan Plateau and implications on Litang active fault Landslides 17:1091–1104. https://doi.org/10.1007/s10346-019-01319-z
Zhai S, Zhan J, Ba Y, Chen J, Li Y, Li Z (2019) PFC model parameter calibration using uniform experimental design and a deep learning network IOP Conference Series: Earth and Environmental Science 304. https://doi.org/10.1088/1755-1315/304/3/032062
Zhan J, Chen J, Zhang W, Han X, Sun X, Bao Y (2018) Mass movements along a rapidly uplifting river valley: an example from the upper Jinsha River, southeast margin of the Tibetan Plateau. Environ Earth Sci 77. https://doi.org/10.1007/s12665-018-7825-4
Zhang L, Tang H, Xiong C, Huang L, Zou Z (2012) Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D. Chin J Rock Mech Eng. 31(A01):2601–2611 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6915.2012.z1.002
Zhang M, Wu L, Zhang J, Li L (2019) The 2009 Jiweishan rock avalanche, Wulong, China: deposit characteristics and implications for its fragmentation. Landslides 16:893–906. https://doi.org/10.1007/s10346-019-01142-6
Zhang W, Wang Q, Chen J, Li H, Que J, Kong Y (2015) Grain-size analysis of debris flow alluvial fans in Panxi area along Jinsha River, China. Sustainability 7:15219–15242. https://doi.org/10.3390/su71115219
Zhang Y, Chen J, Zhou F, Bao Y, Yan J, Zhang Y, Li Y, Gu F, Wang Q (2021) Combined numerical investigation of the Gangda paleolandslide runout and associated dam breach flood propagation in the upper Jinsha River. SE Tibetan Plateau. https://doi.org/10.1007/s10346-021-01768-5
Zhao D, Yu S, Ohtani E (2011) East Asia: seismotectonics, magmatism and mantle dynamics. J Asian Earth Sci 40(3):689–709. https://doi.org/10.1016/j.jseaes.2010.11.013
Zhou J, Cui P, Fang H (2013) Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides 10:331–342. https://doi.org/10.1007/s10346-013-0387-3
Zhou J, Huang K, Shi C, Hao M, Guo C (2015) Discrete element modeling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi Gully, Southwest China. J Asian Earth Sci 99:95–111. https://doi.org/10.1016/j.jseaes.2014.12.008
Zhou L, Fan X, Xu Q, Yang F, Guo C (2019) Numerical simulation and hazard prediction on movement process characteristics of Baige landslide in Jinsha River. J Eng Geol 27(6):1395–1404 (in Chinese with English abstract). https://doi.org/10.13544/j.cnki.jeg.2019-037
Zou Z, Tang H, Xiong C, Su A, Criss R (2017) Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China. Geomorphology 295:1–15. https://doi.org/10.1016/j.geomorph.2017.06.012
Acknowledgements
The authors would like to thank the editor and four anonymous reviewers for their comments and suggestions, which helped greatly improve this paper.
Funding
This work was supported by the National Natural Science Foundation of China (Grant Nos. 41941017 U1702241) and the National Key Research and Development Program of China (Grant No. 2018YFC1505301).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Yan, J., Chen, J., Zhou, F. et al. Numerical simulation of the Rongcharong paleolandslide river-blocking event: implication for the longevity of the landslide dam. Landslides 19, 1339–1356 (2022). https://doi.org/10.1007/s10346-022-01872-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10346-022-01872-0