[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a novel approach to human–robot control. Taking inspiration from behaviour-based robotics and self-organisation principles, we present an interfacing mechanism, with the ability to adapt both towards the user and the robotic morphology. The aim is for a transparent mechanism connecting user and robot, allowing for a seamless integration of control signals and robot behaviours. Instead of the user adapting to the interface and control paradigm, the proposed architecture allows the user to shape the control motifs in their way of preference, moving away from the case where the user has to read and understand an operation manual, or it has to learn to operate a specific device. Starting from a tabula rasa basis, the architecture is able to identify control patterns (behaviours) for the given robotic morphology and successfully merge them with control signals from the user, regardless of the input device used. The structural components of the interface are presented and assessed both individually and as a whole. Inherent properties of the architecture are presented and explained. At the same time, emergent properties are presented and investigated. As a whole, this paradigm of control is found to highlight the potential for a change in the paradigm of robotic control, and a new level in the taxonomy of human in the loop systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akiwa Y, Ogata T, Suga Y, Sugano S (2004) Imitation based human–robot interaction - roles of joint attention and motion prediction. In: Proceeding of the 2004 IEEE international conference of human robot interactive communication (ROMAN 2004). pp 283–288

  • Arkin RC (1998) Behavior-based robotics. MIT press, Cambridge

    Google Scholar 

  • Ashby WR et al (1956) An introduction to cybernetics. Chapman & Hail Ltd., London

  • Bailador G, Roggen D, Tröster G, Triviño G (2007) Real time gesture recognition using continuous time recurrent neural networks. In: Proceedings of the ICST 2nd international conference on body area networks. ICST (institute for computer sciences, social-informatics and telecommunications engineering), p 15

  • Bodiroža S, Stern HI, Edan Y (2012) Dynamic gesture vocabulary design for intuitive human-robot dialog. In: Proceedings of the seventh annual ACM/IEEE international conference on Human–Robot interaction—HRI ’12, p 111. doi:10.1145/2157689.2157710

  • Bodiroža S, Doisy G, Hafner VV (2013) Position-invariant, real-time gesture recognition based on dynamic time warping. In: HRI—ACM/IEEE international conference on human–robot interaction, pp  87–88

  • Büsing L, Schrauwen B, Legenstein R (2010) Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput 22(5):1272–1311. doi:10.1162/neco.2009.01-09-947

    Article  PubMed  Google Scholar 

  • Byl NN, Pitsch EA, Abrams GM (2008) Functional outcomes can vary by dose: learning-based sensorimotor training for patients stable poststroke. Neurorehabilit Neural Rep 22(5):494–504

    Article  Google Scholar 

  • Čerňanský M, Tiňo P (2007) Comparison of echo state networks with simple recurrent networks and variable-length Markov models on symbolic sequences. Artif Neural Netw ICANN 2007:618–627

    Google Scholar 

  • Cheng L, Sun Q, Su H, Cong Y, Zhao S (2012) Design and implementation of human–robot interactive demonstration system based on kinect. In: Control and decision conference (CCDC), 2012 24th Chinese, pp  971–975. doi:10.1109/CCDC.2012.6242992

  • Dayan E, Cohen LG (2011) Neuroplasticity subserving motor skill learning. Neuron 72(3):443–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demiris Y, Dearden A (2005) From motor babbling to hierarchical learning by imitation: a robot developmental pathway. Lund University Cognitive Studies, Lund, pp 31–37

  • Der R (2000) Selforganized robot behavior from the principle of homeokinesis. In: Groß HM, Debes K, Böhme HJ (eds) Proc. workshop SOAVE '2000 (Selbstorganisation von adaptivem Verhalten), vol 643. VDI Verlag, Ilmenau, pp 39–46

  • Der R, Martius G, Hesse F (2006) Let it rollemerging sensorimotor coordination in a spherical robot. In: Tenth International Conference on the Simulation and Synthesis of Living Systems. MIT Press, Cambridge

  • Der R, Steinmetz U, Pasemann F et al (1999) Homeokinesis—a new principle to back up evolution with learning. In: Mohammadian M (ed) Computational intelligence for modelling, control and automation. Amsterdam, pp 43–47

  • Di Paolo EA (2003) Organismically-inspired robotics: homeostatic adaptation and teleology beyond the closed sensorimotor loop. In: Murase K, Asakura T (eds) Dynamical systems approach to embodiment and sociality, advanced knowledge international. Adelaide, Australia, pp 19–42

  • Disbrow E, Russo K, Higginson C, Yund E, Ventura M, Zhang L, Malhado-Chang N, Woods DL, Sigvardt K (2012) Efficacy of tailored computer-based neurorehabilitation for improvement of movement initiation in parkinson’s disease. Brain Res 1452:151–164

    Article  PubMed  CAS  Google Scholar 

  • Doisy G, Meyer J, Edan Y (2014) A gesture learning interface for simulated robot path shaping with a human teacher. IEEE Trans Hum Mach Syst 44(6):788–795. doi:10.1109/THMS.2014.2331618

    Article  Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    Article  PubMed  CAS  Google Scholar 

  • Du G, Zhang P, Mai J, Li Z (2012) Markerless kinect-based hand tracking for robot teleoperation. Int J Adv Robot Syst 9(2):36

    Article  Google Scholar 

  • Ellis R, Ismaeil O, Lipsett M (1996) Design and evaluation of a high-performance haptic interface. Robotica 14:321–327. doi:10.1017/S0263574700019639

    Article  Google Scholar 

  • Gibson JJ (1977) The theory of affordances. Hilldale, Madison

    Google Scholar 

  • Hauser H, Ijspeert AJ, Füchslin RM, Pfeifer R, Maass W (2011) Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 105(5–6):355–370

    Article  PubMed  Google Scholar 

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  PubMed  CAS  Google Scholar 

  • Hu C, Meng M, Liu P, Wang X (2003) Visual gesture recognition for human–machine interface of robot teleoperation. In: Proceedings of 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003. (IROS 2003), vol 2, pp 1560–1565. doi:10.1109/IROS.2003.1248866

  • Ito M, Tani J (2004) On-line imitative interaction with a humanoid robot using a dynamic neural network model of a mirror system. Adapt Behav 12:93–115

    Article  Google Scholar 

  • Jaeger H (2001) The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. German National Research Center for Information Technology GMD Technical Report, vol 148. Bonn, Germany

  • Jaeger H (2002) Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the echo state network approach. GMD-Forschungszentrum Informationstechnik, GMD Report 159. p 48

  • Jirak D, Barros P, Wermter S (2015) Dynamic gesture recognition using echo state networks. In: Proceedings, p 475. Presses universitaires de Louvain

  • Kajic I, Schillaci G, Bodiroza S, Hafner VV (2014) A biologically inspired model for coding sensorimotor experience leading to the development of pointing behaviour in a humanoid robot. In: Proceedings of the workshop HRI: a bridge between robotics and neuroscience. 9th ACM/IEEE international conference on human–robot interaction (HRI 2014)

  • Kolen JF, Kremer SC (2001) A field guide to dynamical recurrent networks. Wiley, New York

    Google Scholar 

  • Laje R, Buonomano DV (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat Neurosci 16(7):925–933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leitner J, Luciw M, Förster A, Schmidhuber J (2014) Teleoperation of a 7 DOF humanoid robot arm using human arm accelerations and EMG signals. In: 12th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS). Montreal, Canada

  • Lii NY, Chen Z, Roa Ma, Maier A, Pleintinger B, Borst C (2012) Toward a task space framework for gesture commanded telemanipulation. In: 2012 IEEE RO-MAN: the 21st IEEE international symposium on robot and human interactive communication, pp 925–932. doi:10.1109/ROMAN.2012.6343869

  • Manjunath G, Jaeger H (2013) Echo state property linked to an input: exploring a fundamental characteristic of recurrent neural networks. Neural Comput 25(3):671–696

    Article  PubMed  CAS  Google Scholar 

  • Marin R, Sanz P, Nebot P, Wirz R (2005) A multimodal interface to control a robot arm via the web: a case study on remote programming. IEEE Trans Ind Electron 52(6):1506–1520. doi:10.1109/TIE.2005.858733

    Article  Google Scholar 

  • Martius G, Herrmann JM (2010) Taming the beast: guided self-organization of behavior in autonomous robots. In: International conference on simulation of adaptive behavior. Springer, Berlin Heidelberg, pp 50–61

  • Martius G, Fiedler K, Herrmann JM (2008) Structure from behavior in autonomous agents. In: IROS 2008. IEEE/RSJ international conference on intelligent robots and systems, 2008, IEEE, pp 858–862

  • Maung THH et al (2009) Real-time hand tracking and gesture recognition system using neural networks. World Acad Sci Eng Technol 50:466–470

    Google Scholar 

  • Melidis C, Marocco D (2015a) A human centric approach to robotic control. In: 2015 IEEE international conference on systems, man, and cybernetics (SMC), pp 2441–2446

  • Melidis C, Marocco D (2015b) An exploration on intuitive interfaces for robot control based on self organisation. In: Headleand CJ, Teahan WJ, Ap Cenydd L (eds) Artificial life and intelligent agents, communications in computer and information science, vol 519. Springer, Cham, Switzerland, pp 73–79

    Chapter  Google Scholar 

  • Meltzoff AN, Moore MK (1997) Explaining facial imitation: a theoretical model. Early Dev Parent 6(June):179–192. doi:10.1002/(SICI)1099-0917(199709/12)6:3/4<179::AID-EDP157>3.0.CO;2-R

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra S, Acharya T (2007) Gesture recognition: a survey. IEEE Trans Syst Man Cybern C (Appl Rev) 37(3):311–324

    Article  Google Scholar 

  • Molchanov P, Yang X, Gupta S, Kim K, Tyree S, Kautz J (2016) Online detection and classification of dynamic hand gestures with recurrent 3d convolutional neural network. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  • Mondada F, Bonani M, Raemy X, Pugh J, Cianci C, Klaptocz A, Magnenat S, Zufferey JC, Floreano D, Martinoli A (2009) The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th conference on autonomous robot systems and competitions, vol 1, pp 59–65. IPCB: Instituto Politécnico de Castelo Branco

  • Morasso P, Sanguineti V (1995) Self-organizing body schema for motor planning. J Motor Behav 27(1):52–66

    Article  Google Scholar 

  • Namikawa J, Nishimoto R, Tani J (2011) A neurodynamic account of spontaneous behaviour. PLoS Comput Biol 7(10):e1002,221. doi:10.1371/journal.pcbi.1002221

    Article  CAS  Google Scholar 

  • Neverova N, Wolf C, Taylor GW, Nebout F (2014) Multi-scale deep learning for gesture detection and localization. In: Workshop at the European conference on computer vision, pp 474–490. Springer

  • Nolfi S (1998) Evolutionary robotics: exploiting the full power of self-organization. Connect Sci 10(3–4):167–184. doi:10.1080/095400998116396

    Article  Google Scholar 

  • Pfeifer R (2006) Morphological computation: connecting brain, body, and environment. Springer, Berlin

    Google Scholar 

  • Piaget J (1953) The origin of intelligence in the child. Routledge & Paul, London

    Google Scholar 

  • Ratanamahatana CA, Keogh E (2004) Everything you know about dynamic time warping is wrong. In: Third workshop on mining temporal and sequential data, in conjunction with the Tenth ACM SIGKDD international conference on knowledge discovery and data mining (KDD-2004). Seattle, WA, 22–25 August 2004

  • Ren Z, Yuan J, Meng J, Zhang Z (2013) Robust part-based hand gesture recognition using kinect sensor. IEEE Trans Multimed 15(5):1110–1120. doi:10.1109/TMM.2013.2246148

    Article  Google Scholar 

  • Saunders J, Nehaniv CL, Dautenhahn K (2006) Teaching robots by moulding behavior and scaffolding the environment. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human–robot interaction, HRI ’06, pp 118–125. ACM, New York, NY. doi:10.1145/1121241.1121263

  • Scholtz J (2003) Theory and evaluation of human robot interactions. In: Proceedings of the 36th annual Hawaii international conference on system sciences, 2003, vol 3, pp 10.  doi:10.1109/HICSS.2003.1174284

  • Shah D, Schneider J, Campbell M (2012) A sketch interface for robust and natural robot control. Proc IEEE 100(3):604–622. doi:10.1109/JPROC.2011.2179772

    Article  Google Scholar 

  • Sheng C, Zhao J, Liu Y, Wang W (2012) Prediction for noisy nonlinear time series by echo state network based on dual estimation. Neurocomputing 82:186–195

    Article  Google Scholar 

  • Shneiderman B (1986) Designing the user interface-strategies for effective human–computer interaction. Pearson Education India, Delhi, India

    Google Scholar 

  • Simon HA, Newell A (1971) Human problem solving: the state of the theory in 1970. Am Psychol 26(2):145

    Article  Google Scholar 

  • Sterr A, Freivogel S (2003) Motor-improvement following intensive training in low-functioning chronic hemiparesis. Neurology 61(6):842–844

    Article  PubMed  Google Scholar 

  • Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4):544–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tani J (2003) Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Netw 16(1):11–23

    Article  PubMed  Google Scholar 

  • Tsironi E, Barros P, Wermter S (2016) Gesture recognition with a convolutional long short-term memory recurrent neural network. In: Proceedings of the European symposium on artificial neural networks computational intelligence and machine learning (ESANN), pp 213–218

  • Von Hofsten C (2004) An action perspective on motor development. Trends Cogn Sci 8(6):266–272

    Article  Google Scholar 

  • Widrow B, Hoff ME (1960) Adaptive switching circuits. IRE WESCON Conv Rec 4(1):96–104

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347. doi:10.1016/S1364-6613(98)01221-2

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Pigou L, Kindermans PJ, Le NDH, Shao L, Dambre J, Odobez JM (2016) Deep dynamic neural networks for multimodal gesture segmentation and recognition. IEEE Trans Pattern Anal Mach Intell 38(8):1583–1597. doi:10.1109/TPAMI.2016.2537340

    Article  PubMed  Google Scholar 

  • Xu D, Wu X, Chen YL, Xu Y (2015) Online dynamic gesture recognition for human robot interaction. J Intell Robot Syst 77(3–4):583–596

    Article  Google Scholar 

  • Xu D, Chen YL, Lin C, Kong X, Wu X (2012) Real-time dynamic gesture recognition system based on depth perception for robot navigation. In: 2012 IEEE international conference on robotics and biometrics (ROBIO), pp 689–694. doi:10.1109/ROBIO.2012.6491047

  • Yamashita Y, Tani J (2008) Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS Comput Biol 4(11):e1000,220. doi:10.1371/journal.pcbi.1000220

    Article  CAS  Google Scholar 

  • Yin Y (2014) Real-time continuous gesture recognition for natural multimodal interaction. Bull Center Educ Res Dev 21:1–8

    CAS  Google Scholar 

  • Zambelli M, Demiris Y (2016) Online multimodal ensemble learning using self-learned sensorimotor representations. IEEE Trans Cogn Dev Syst PP(99):1–1. doi: 10.1109/TCDS.2016.2624705

    Article  Google Scholar 

  • Zhao Q, Brine J, Filev DP (2015) Defining cybernetics. IEEE Syst Man Cybern Mag 1(2):18–26. doi:10.1109/MSMC.2015.2421325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Melidis.

Additional information

This article is part of a Special Section on ’Cognitive Robotics’ guest-edited by Antonio Bandera, Jorge Dias, and Luis Manso.

Guest editor: Luis Manso (University of Extremadura); Reviewers: Diego Faria (Aston University, Birmingham), Pablo Bustos (University of Extremadura)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melidis, C., Iizuka, H. & Marocco, D. Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration. Cogn Process 19, 245–264 (2018). https://doi.org/10.1007/s10339-017-0818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-017-0818-5

Keywords