Abstract
This review focuses on the evolution of Pirkle-type chiral stationary phases (CSPs), based on chiral recognition mechanism of small molecules and applications directly related with Medicinal Chemistry. Therefore, the strategies to plan these chiral selectors for enantioseparation of diverse therapeutic classes of chiral drugs and the understanding of the recognition mechanism are emphasized. The planning of Pirkle and co-workers to design different classes of CSPs was initially based on NMR studies, following the principle of reciprocity together with chromatographic results and studies of chiral recognition phenomena. All those features are described and critically discussed in this review. Finally, based on general principles established by Pirkle’s work it can be inferred that diverse chiral small molecules can be successfully used as chromatographic tools for enantiomeric resolution. In this context, several research groups were inspired on Pirkle’s design to develop new CSPs. Xanthone derivatives bonded to chiral groups were also exploited as selectors for CSPs and are briefly reported.
Similar content being viewed by others
References
Caldwell J (1996) Importance of stereospecific bioanalytical monitoring in drug development. J Chromatogr A 719(1):3–13
Triggle DJ (1997) Stereoselectivity of drug action. Drug Discovery Today 2(4):138–147
Rentsch KM (2002) The importance of stereoselective determination of drugs in the clinical laboratory. J Biochem Biophys Methods 54(1–3):1–9
Cordato DJ, Mather LE, Herkes GK (2003) Stereochemistry in clinical medicine: a neurological perspective. J Clin Neurosci 10(6):649–654
Baumann P, Zullino DF, Eap CB (2002) Enantiomers’ potential in psychopharmacology—a critical analysis with special emphasis on the antidepressant escitalopram. Eur Neuropsychopharmacol 12(5):433–444
Baker GB, Prior TI, Coutts RT (2002) Chirality and drugs used to treat psychiatric disorders. J Psychiatry Neurosci 27(6):401–403
Caldwell J (1995) Stereochemical determinants of the nature and consequences of drug metabolism. J Chromatogr A 694(1):39–48
Brocks DR (2006) Drug disposition in three dimensions: an update on stereoselectivity in pharmacokinetics. Biopharm Drug Dispos 27(8):387–406
Mannschreck A, Kiesswetter R, von Angerer E (2007) Unequal activities of enantiomers via biological receptors: examples of chiral drug, pesticide, and fragrance molecules. J Chem Educ 84(12):2012–2017
Kasprzyk-Hordern B (2010) Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 39(11):4466–4503
Pasteur L (1848) Memoire sur la relation qui peut exister entre la forme crystalline et la composition chimique et sur la cause del la polarization rotatoire. Competes rendues de l’ Academie des Sciences 26:535–538
Blaschke G et al (1979) Chromatographic separation of racemic thalidomide and teratogenic activity of its enantiomers (author’s transl). Chromatographische Racemattrennung von Thalidomid und teratogene Wirkung der Enantiomere. Arzneimittelforschung 29(10): 1640–1642
FDA (1992) FDA’s policy statement for the development of new stereoisomeric drugs. Fed Reg 57: FR 22249
Investigation of chiral active substances. Directive 75/318/EEC (1993)
Shimazawa R et al (2008) Present state of new chiral drug development and review in Japan. J Health Sci 54(1):23–29
Maier NM, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906(1–2):3–33
Caner H et al (2004) Trends in the development of chiral drugs. Drug Discovery Today 9(3):105–110
Agranat I, Wainschtein SR (2010) The strategy of enantiomer patents of drugs. Drug Discovery Today 15(5–6):163–170
Metzger S et al (2005) Entfernung von iodierten Röntgenkontrastmitteln bei der kommunalen Abwasserbehandlung durch den Einsatz von Pulveraktivkohle. GWF Wasser Abwasser 9:638
http://www.imshealth.com. Accessed 6 Mar 2013
Agranat I, Caner H (1999) Intellectual property and chirality of drugs. Drug Discovery Today 4(7):313–321
Hutt AJ, Valentová J (2003) The chiral switch: the development of single enantiomers drugs from racemates. Acta Facultatis Pharmaceuticae Universitatis Comenianae 50:7–23
Francotte ER (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906(1–2):379–397
Francotte E, Lindner W (2006) Methods and principles in medicinal chemistry: chirality in drug research, vol 33. Wiley, Weinheim
Taylor DR, Maher K (1992) Chiral separations by high-performance liquid chromatography. J Chromatogr Sci 30(3):67
Haginaka J (2002) Pharmaceutical and biomedical applications of enantioseparations using liquid chromatographic techniques. J Pharm Biomed Anal 27(3–4):357–372
Toyo’oka T (2002) Resolution of chiral drugs by liquid chromatography based upon diastereomer formation with chiral derivatization reagents. J Biochem Biophys Methods 54(1–3):25–56
Zhang Y et al (2005) Enantioselective chromatography in drug discovery. Drug Discovery Today 10(8):571–577
Cavazzini A et al (2011) Recent applications in chiral high performance liquid chromatography: a review. Anal Chim Acta 706:205–222
Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217(6):814–856
Kalíková K, Riesová M, Tesařová E (2012) Recent chiral selectors for separation in HPLC and CE. Cent Eur J Chem 10(3):450–471
Ward TJ, Ward KD (2012) Chiral separations: a review of current topics and trends. Anal Chem 84(2):626–635
Okamoto Y, Ikai T (2008) Chiral HPLC for efficient resolution of enantiomers. Chem Soc Rev 37(12):2593–2608
Felix G, Berthod A (2007) Commercial chiral stationary phases for the separations of clinical racemic drugs. Sep Purif Rev 36(4):285–481
Pirkle WH, Pochapsky TC (1989) Considerations of chiral recognition relevant to the liquid chromatographic separation of enantiomers. Chem Rev 89(2):347–362
Gorog S, Gazdag M (1994) Enantiomeric derivatization for biomedical chromatography. J Chromatogr B Biomed Appl 659(1–2):51–84
Dalgliesh CE (1952) The optical resolution of aromatic amino-acids on paper chromatograms. J Chem Soc (resumed): 3916–3922
Davankov VA (1997) The nature of chiral recognition: is it a three-point interaction? Chirality 9(2):99–102
Booth TD, Wahnon D, Wainer IW (1997) Is chiral recognition a three-point process? Chirality 9(2):96–98
Kafri R, Lancet D (2004) Probability rule for chiral recognition. Chirality 16(6):369–378
Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217(6):814–856
Scriba GKE (2012) Chiral recognition mechanisms in analytical separation sciences. Chromatographia 75(15–16):815–838
Däppen R, Karfunkel HR, Leusen FJJ (1990) Computational chemistry applied to the design of chiral stationary phases for enantiomeric separation. J Comput Chem 11:181–193
Weinstein S, Leiserowitz L, Gil-Av E (1980) Chiral secondary amides. 2. Molecular packing and chiral recognition. J Am Chem Soc 102(8):2768–2772
Lipkowitz KB (2001) Atomistic modeling of enantioselection in chromatography. J Chromatogr A 906(1–2):417–442
Lipkowitz KB (1994) Theoretical studies of brush-type chiral stationary phases. J Chromatogr A 666(1–2):493–503
Lipkowitz KB, Baker B (1990) Computational analysis of chiral recognition in Pirkle phases. Anal Chem 62:770–774
Busch KW, Busch MA (2006) Chiral analysis, 1st edn. Elsevier, Oxford
Pirkle WH, Däppen R (1987) Reciprocity in chiral recognition. Comparison of several chiral stationary phases. J Chromatogr A 404(C): 107–115
Welch CJ (1994) Evolution of chiral stationary phase design in the Pirkle laboratories. J Chromatogr A 666(1–2):3–26
Welch CJ (1995) Crawling out of the chiral pool: the evolution of Pirkle-type chiral stationary phases. In: Brown PR, Grushka E (eds) Advances in chromatography. Marcel Dekker, New York, p 171–197
Pirkle WH (1966) The nonequivalence of physical properties of enantiomers in optically active solvents. Differences in nuclear magnetic resonance spectra. I [20]. J Am Chem Soc 88(8):1837
Pirkle WH, Beare SD (1967) Nonequivalence of the nuclear magnetic resonance spectra of enantiomers in optically active solvents. IV. Assignment of absolute configuration [25]. J Am Chem Soc 89(21):5485–5487
Pirkle WH, Burlingame TG (1967) Nonequivalence of the nuclear magnetic reasonance spectra of enantiomers in optically active solvents III. Tetrahedron Lett 8(41):4039–4042
Pirkle WH, Burlingame TG, Beare SD (1968) Optically active NMR solvents VI. The determination of optical purity and absolute configuration of amines. Tetrahedron Lett 9(56):5849–5852
Pirkle WH, Beare SD, Muntz RL (1974) Assignment of absolute configuration of sulfoxides by NMR. A solvation model. Tetrahedron Lett 15(26):2295–2298
Pirkle WH, Beare SD, Muntz RL (1969) Optically active solvents for nuclear magnetic resonance X. Enantiomeric nonequivalence of sulfinamides, sulfinates, sulfites, thiosulfinates, phosphine oxides, and amine oxides [18]. J Am Chem Soc 91(16):4575
Pirkle WH, Hoekstra MS (1976) Chiral nuclear magnetic resonance solvating agents. Resolution, determination of enantiomeric purity, and assignment of absolute configuration of cyclic and acyclic sulfinate esters. J Am Chem Soc 98(7):1832–1839
Pirkle WH, Muntz RL, Paul IC (1971) Chiral nuclear magnetic resonance solvents. XI. A method for determining the absolute configuration of chiral N, N-dialkylarylamine oxides [27]. J Am Chem Soc 93(11):2817–2819
Pirkle WH, Beare SD (1969) Optically active solvents in nuclear magnetic resonance spectroscopy IX. Direct determinations of optical purities and correlations of absolute configurations of α-amino acids. J Am Chem Soc 91(18):5150–5155
Pirkle WH, Rinaldi PL (1977) Nuclear magnetic resonance determination of enantiomeric compositions of oxaziridines using chiral solvating agents. J Org Chem 42(20):3217–3219
Pirkle WH, Sikkenga DL (1977) The use of chiral solvating agents for nuclear magnetic resonance determination of enantiomeric purity and absolute configuration of lactones. Consequences of three-point interactions. J Org Chem 42(8):1370–1374
Pirkle WH, Sikkenga DL, Pavlin MS (1977) Nuclear magnetic resonance determination of enantiomeric composition and absolute configuration of γ-lactones using chiral 2,2,2-trifluoro-1-(9-anthryl)ethanol. J Org Chem 42(2):384–387
Pirkle WH, Rinaldi PL (1978) Erratum: nuclear magnetic resonance determination of enantiomeric compositions of oxaziridines using chiral solvating agents (Journal of Organic Chemistry (1977) 42 (3217)). J Org Chem 43(26):5027
Pirkle WH, Boeder CW (1977) Estimation of allene optical purities by nuclear magnetic resonance. J Org Chem 42(23):3697–3700
Pirkle WH, Hoekstra MS (1974) An example of automated liquid chromatography. Synthesis of a broad-spectrum resolving agent and resolution of 1-(1-naphthyl)-2,2,2-trifluoroethanol. J Org Chem 39(26):3904–3906
Pirkle WH, Sikkenga DL (1975) Use of achiral shift reagents to indicate relative stabilities of diastereomeric solvates. J Org Chem 40(23):3430–3434
Pirkle WH, Hoekstra MS, Miller WH (1976) Electronic effects in asymmetric induction. Reaction of para-substituted phenylsulfinyl chlorides with S-(+)-1-(1-naphthyl)-2,2,2-trifluoroethanol. Tetrahedron Lett 17(25):2109–2112
Pirkle WH, Sikkenga DL (1976) Resolution of optical isomers by liquid chromatography. J Chromatogr A 123(2):400–404
Pirkle WH, House DW, Finn JM (1980) Broad spectrum resolution of optical isomers using chiral high-performance liquid chromatographic bonded phases. J Chromatogr 192(1):143–158
Pirkle WH, House DW (1979) Chiral high-pressure liquid chromatographic stationary phases 1. Separation of the enantiomers of sulfoxides, amines, amino acids, alcohols, hydroxy acids, lactones, and mercaptans. J Org Chem 44(12):1957–1960
Pirkle WH, Tsipouras A (1984) Direct liquid chromatographic separation of benzodiazepinone enantiomers. J Chromatogr 291:291–298
Pirkle WH, Murray PG (1990) The separation of the enantiomers of a variety of non-steroidal anti-inflammatory drugs (NSAIDS) as their anilide derivatives using a chiral stationary phase. J Liq Chromatogr 13(11):2123–2134
Pirkle WH, Tsipouras A, Sowin TJ (1985) Preparative separation of enantiomers by flash chromatography. J Chromatogr A 319(C): 392–395
Pirkle WH, Welch CJ, Hyun MH (1983) A chiral recognition model for the chromatographic resolution of N-acylated 1-aryl-1-aminoalkanes. J Org Chem 48(25):5022–5026
Pirkle WH, Welch CJ (1984) Chromatographic separation of the enantiomers of acylated amines on chiral stationary phases. J Org Chem 49(1):138–140
Pirkle WH et al (1984) Chromatographic separation of the enantiomers of N-acylated heterocyclic amines. J Org Chem 49(13):2504–2506
Pirkle WH, McCune JE (1989) Separation of the enantiomers of N-protected α-amino acids as anilide and 3,5-dimethylanilide derivatives. J Chromatogr 479(2):419–423
Pirkle WH, Hamper BC (1988) Chromatographic separation of the enantiomers of 1,3-dithiolane-1-oxides. J Chromatogr 450(2):199–210
Pirkle WH et al (1985) Chromatographic separation of the enantiomers of 2-carboalkoxyindolines and N-aryl-α-amino esters on chiral stationary phases derived from N-(3,5-dinitrobenzoyl)-α-amino acids. J Chromatogr A 348(C): 89–96
Pirkle WH, Burke JA (1992) Separation of the enantiomers of the 3,5-dinitrobenzamide derivatives of α-amino phosphonates on four chiral stationary phases. J Chromatogr 598(2):159–167
Pirkle WH, Sowin TJ (1987) Direct liquid chromatographic separation of phthalide enantiomers. J Chromatogr A 387(C): 313–321
Pirkle WH, McCune JE (1988) An improved chiral stationary phase for the facile separation of enantiomers. J Chromatogr A 441(2):311–322
Pirkle WH, McCune JE (1989) Improved chiral stationary phase for the separation of the enantiomers of chiral acids as their anilide derivatives. J Chromatogr A 471(C):271–281
Pirkle WH, Welch CJ, Zych AJ (1993) Chromatographic investigation of the slowly interconverting atropisomers of hindered naphthamides. J Chromatogr 648(1):101–109
Pirkle WH et al (1984) A rational approach to the design of highly effective chiral stationary phases for the liquid chromatographic separation of enantiomers. J Pharm Biomed Anal 2(2):173–181
Pirkle WH, Finn JM (1981) Chiral high-pressure liquid chromatographic stationary phases. 3. General resolution of arylalkylcarbinols. J Org Chem 46(14):2935–2938
Pirkle WH et al (1981) A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers. J Am Chem Soc 103(13):3964–3966
Pirkle WH, Schreiner JL (1981) Chiral high-pressure liquid chromatographic stationary phases. 4. Separation of the enantiomers of bi-P-naphthols and analogues. J Org Chem 46(24):4988–4991
Pirkle WH, Finn JM (1982) Preparative resolution of racemates on a chiral liquid chromatography column. J Org Chem 47(21):4037–4040
Pirkle WH, Tsipouras A, Hyun MH (1986) Use of chiral stationary phases for the chromatographic determination of enantiomeric purity and absolute configuration of some β-lactams. J Chromatogr 358(2):377–384
Lee W et al (2011) Assessing chiral self-recognition using chiral stationary phases. Tetrahedron 67(37):7143–7147
Pirkle WH, Hyun MH (1985) α-arylalkylamine-derived chiral stationary phases. Evaluation of urea linkages. J Chromatogr A 322(C): 295–307
Pirkle WH, Hyun MH (1985) Effect of interstrand distance upon chiral recognition by a chiral stationary phase. J Chromatogr A 328:1–9
Pirkle WH, Hyun MH (1984) A chiral stationary phase for the facile resolution of amino acids, amino alcohols, and amines as the N-3,5-dinitrobenzoyl derivatives. J Org Chem 49(17):3043–3046
Pirkle WH, Hyun MH (1985) Reversed-phase chromatographic resolution of N-(3,5-dinitrobezoyl)-α-amino acids on chiral stationary phases. J Chromatogr A 322(C): 287–293
Pirkle WH et al (1987) Separation of some enantiomeric di- and tripeptides on chiral stationary phases. J Chromatogr A 398(C): 203–209
Griffith OW et al (1986) Liquid chromatographic separation of enantiomers of β-amino acids using a chiral stationary phase. J Chromatogr A 362(C): 345–352
Pirkle WH, Welch CJ, Hyun MH (1992) Concerning the role of face-to-edge π–π interactions in chiral recognition. J Chromatogr 607(1):126–130
Hyun MH, Ryoo JJ, Pirkle WH (2000) Experimental support differenciating two proposed chiral recognition models for the resolution of N-(3,5-Dinitrobenzoyl)-α-arylalkylamines on high-performance liquid chromatography chiral stationary phases. J Chromatogr A 886(1–2):47–53
Pirkle WH, Mahler G, Hyun MH (1986) Separation of the enantiomers of 3,5-dinitrophenyl carbamates and 3,5-dinitrophenyl ureas. J Liq Chromatogr 9:443–453
Pirkle WH, Hyun MH, Bank B (1984) A rational approach to the design of highly-effective chiral stationary phases. J Chromatogr A 316:585–604
Pirkle WH, Yamamoto S (1983) Bunseki Kagaku 32:345
Pirkle WH, Hyun MH (1985) Preparation and use of hydantion-based chiral stationary phases. J Chromatogr A 322(C): 309–320
Pirkle WH, Pochapsky TC (1986) Erratum: a new, easily accessible reciprocal chiral stationary phase for the chromatographic separation of enantiomers (Journal of the American Chemical Society (1986) 108 (352–354)). J Am Chem Soc 108(9):2492
Pirkle WH et al (1986) Useful and easily prepared chiral stationary phases for the direct chromatographic separation of the enantiomers of a variety of derivatized amines, amino acids, alcohols, and related compounds. J Org Chem 51(25):4991–5000
Pirkle WH, Deming KC, Burke Iii JA (1991) A chiral stationary phase which affords unusually high levels of enantioselectivity. Chirality 3(3): 183–187
Pirkle WH, Pochapsky TC (1986) Generation of extreme selectivity in chiral recognition. J Chromatogr A 369(C): 175–177
Pirkle WH, Readnour RS (1991) Chromatographic approach to the measurement of the interstrand distance for some chiral bonded phases. Anal Chem 63(1):16–20
Pirkle WH, Bowen WE, Vuong DV (1994) Liquid chromatographic separation of the enantiomers of cyclic β-amino esters as their N-3,5-dinitrobenzoyl derivatives. J Chromatogr A 676(2):297–302
Pirkle WH, Sowin TJ (1987) Design, preparation and performance of a phthalide-based chiral stationary phase. J Chromatogr A 396(C): 83–92
Hyun MH, Pirkle WH (1987) Preparation and evaluation of a chiral stationary phase bearing both π-acidic and -basic sites. J Chromatogr A 393(2):357–365
Pirkle WH, Welch CJ (1991) Chromatographic separation of underivatized naproxen enantiomers. J Liq Chromatogr 14(18):3387–3396
Pirkle WH et al (1992) Target-directed design of chiral stationary phases. Anal Proc 29:225–227
Pirkle WH, Burke JA III (1991) Chiral stationary phase designed for β-blockers. J Chromatogr 557(1–2):173–185
Pirkle WH, Burke JA (1989) Preparation of a chiral stationary phase from an α-amino phosphonate. Chirality 1:57–62
Pirkle WH, Lee W (2010) Separation of the enantiomers of β-blockers using brush type chiral stationary phase derived from conformationally rigid α-amino β-lactam. Bull Korean Chem Soc 31(3):620–623
Pirkle WH, Welch CJ, Lamm B (1992) Design, synthesis, and evaluation of an improved enantioselective naproxen selector. J Org Chem 57(14):3854–3860
Pirkle WH, Liu Y (1994) Design, synthesis, resolution, determination of absolute configuration, and evaluation of a chiral naproxen selector. J Org Chem 59(23):6911–6916
Pirkle WH, Liu Y (1996) Incremental development of chiral selectors for underivatized profens. J Chromatogr A 736(1–2):31–38
Pirkle WH, Liu Y (1996) On the relevance of face-to-edge π–π interactions to chiral recognition. J Chromatogr A 749(1–2):19–24
Pirkle WH, Welch CJ (1994) Use of simultaneous face to face and face to edge π–π interactions to facilitate chiral recognition. Tetrahedron Asymmetr 5(5):777–780
Pirkle WH, Welch CJ (1992) An improved chiral stationary phase for the chromatographic separation of underivatized naproxen enantiomers. J Liq Chromatogr 15(11):1947–1955
Pirkle WH, Koscho ME, Wu Z (1996) High-performance liquid chromatographic separation of the enantiomers of N-aryloxazolinones, N-aryl thiazolinones and their sulfur derivatives on a synthetic chiral stationary phase. J Chromatogr A 726(1–2):91–97
Pirkle WH et al (1996) Facile separation of the enantiomers of diethyl N-(aryl)-1-amino-1-arylmethanephosphonates on a rationally designed chiral stationary phase. J Chromatogr A 721(2):241–246
Pirkle WH et al (1996) Resolution and determination of the enantiomeric purity and absolute configurations of α-aryl-α-hydroxymethanephosphonates. Tetrahedron Asymmetr 7(8):2173–2176
Pirkle WH, Gan KZ, Brice LJ (1996) The enhancement of enantioselectivity by halogen substituents. Tetrahedron Asymmetr 7(10):2813–2816
Pirkle WH, Gan KZ (1997) Facile and predictable means of separating the enantiomers of 5-arylhydantoins. J Chromatogr A 790(1–2):65–71
Villani C, Pirkle WH (1995) Chromatographic resolution of the interconverting stereoisomers of hindered sulfinyl and sulfonyl naphthalene derivatives. Tetrahedron Asymmetr 6(1):27–30
Pirkle WH, Koscho ME (1997) Predictable chromatographic separations of enantiomers: aryl allenic acids and their derivatives. J Chromatogr A 761(1–2):65–70
Pirkle WH, Spence PL (1998) Chiral recognition of phthalides and lactams. Chirality 10(5):430–433
Pirkle WH, Spence PL (1997) Enantiodiffertiation of aryl-substituted heterocycles: a mechanistic study using γ-lactones. J Chromatogr A 775(1–2):81–90
Wolf C, Pirkle WH (1998) Synthesis and evaluation of a copolymeric chiral stationary phase. J Chromatogr A 799(1–2):177–184
Pirkle WH, Brice LJ, Terfloth GJ (1996) Liquid and subcritical CO2 separations of enantiomers on a broadly applicable polysiloxane chiral stationary phase. J Chromatogr A 753(1):109–119
Pirkle WH, Murray PG (1993) Chiral stationary phase design. Use of intercalative effects to enhance enantioselectivity. J Chromatogr 641(1):11–19
Pirkle WH, Murray PG (1996) Observations relevant to the differential intercalation of enantiomers between the strands of brush-type chiral stationary phases. J Chromatogr A 719(2):299–305
Pirkle WH, Koscho ME (1999) Structural optimization of a chiral selector for use in preparative enantioselective chromatography. J Chromatogr A 840(2):151–158
Pirkle WH, Welch CJ (1992) Effect of superfluous remote polar functionality on chiral recognition. J Chromatogr 589(1–2):45–51
Pirkle WH, Murray PG, Burke JA (1993) Use of homologous series of analytes as mechanistic probes to investigate the origins of enantioselectivity on two chiral stationary phases. J Chromatogr 641(1):21–29
Pirkle WH, Bowen WE (1994) Chiral stationary phase design: a study in optimization. J High Resolut Chromatogr 17:629–633
Pirkle WH et al (1994) Doubly tethered tertiary amide selectors. Modified version of Doyle et al.’s naproxen chiral stationary phase. J Chromatogr A 659(1):69–74
Wolf C, Pirkle WH (2002) Conformational effects on the enantioselective recognition of 4-(3,5-dinitrobenzamido)-1,2,3,4-tetrahydrophenanthrene derivatives by a Naproxen-derived chiral stationary phase. Tetrahedron 58(18):3597–3603
Schleimer LM, Pirkle WH, Schurig V (1994) Enantiomer separation by high-performance liquid chromatography on polysiloxane-based chiral stationary phases. J Chromatogr A 679(1):23–34
Terfloth GJ et al (1995) Broadly applicable polysiloxane-based chiral stationary phase for high-performance liquid chromatography and supercritical fluid chromatography. J Chromatogr A 705(2):185–194
Kosaka M et al (2003) Enantioresolution and absolute configurations of chiral meta-substituted diphenylmethanols as determined by x-ray crystallographic and 1H NMR anisotropy methods. Chirality 15(4):324–328
Naito J et al (2004) Enantioresolution of fluorinated diphenylmethanols and determination of their absolute configurations by X-ray crystallographic and 1H NMR anisotropy methods. Chirality 16(1):22–35
Job GE et al (2004) The effects of aromatic substituents on the chromatographic enantioseparation of diarylmethyl esters with the Whelk-O1 chiral stationary phase. J Chromatogr A 1055(1–2):41–53
Koscho ME, Spence PL, Pirkle WH (2005) Chiral recognition in the solid state: crystallographically characterized diastereomeric co-crystals between a synthetic chiral selector (Whelk-O1) and a representative chiral analyte. Tetrahedron Asymmetr 16(19):3147–3153
Snyder SE, Carey JR, Pirkle WH (2005) Biphasic enantioselective partitioning studies using small-molecule chiral selectors. Tetrahedron 61(31):7562–7567
Snyder SE et al (2007) Strong enantioselective self-recognition of a small chiral molecule. Org Lett 9(12):2341–2343
Perrin SR et al (2007) Purification of difluoromethylornithine by global process optimization: coupling of chemistry and chromatography with enantioselective crystallization. Org Process Res Dev 11(5):817–824
Snyder SE, Shvets AB, Pirkle WH (2002) Enantioselective nucleophilic aromatic substitution with small-molecule chiral selectors. Helv Chim Acta 85(11):3605–3615
Snyder SE et al (2005) Formation of stable Meisenheimer adduct ion pairs in apolar solvents: implications for stereoselective reactions. J Org Chem 70(10):4073–4081
Snyder SE, Pirkle WH (2002) Enantioselective hydrolysis of N-acylated α-amino esters at a biphasic interface: Tandem reaction kinetic resolution using a chiral complexing agent. Org Lett 4(19):3283–3286
Pirkle WH, Snyder SE (2001) Two-component chiral phase transfer catalysts: enantioselective esterification of an N-acylated amino acid. Org Lett 3(12):1821–1823
Koscho ME, Pirkle WH (2005) Investigation of a broadly applicable chiral selector used in enantioselective chromatography (Whelk-O 1) as a chiral solvating agent for NMR determination of enantiomeric composition. Tetrahedron Asymmetr 16(20):3345–3351
Hyun MH, Pirkle WH (2000) Liquid chromatographic separation of the stereoisomers of thiazide diuretics. J Chromatogr A 876(1–2):221–227
Kacprzak KM, Lindner W (2011) Novel Pirkle-type quinine 3,5-dinitrophenylcarbamate chiral stationary phase implementing click chemistry. J Sep Sci 34(18):2391–2396
Wu H et al (2012) Investigation of brush-type chiral stationary phases based on O, O′-diaroyl tartardiamide and O, O′-bis-(arylcarbamoyl) tartardiamide. J Sep Sci 35(3):351–358
Wei WJ et al (2010) Preparation and enantioseparation of a mixed selector chiral stationary phase derived from benzoylated tartaric acid and 1,2-diphenylethylenediamine. Chirality 22(6):604–611
Cancelliere G et al (2010) Transition from enantioselective high performance to ultra-high performance liquid chromatography: a case study of a brush-type chiral stationary phase based on sub-5-micron to sub-2-micron silica particles. J Chromatogr A 1217(7):990–999
Gasparrini F, Misiti D, Villani C (2001) High-performance liquid chromatography chiral stationary phases based on low-molecular-mass selectors. J Chromatogr A 906(1–2):35–50
Yilmaz H et al (2010) Resolution of (±)-β-methylphenylethylamine by a novel chiral stationary phase for Pirkle-type column chromatography. Chirality 22(2):252–257
Moiteiro C et al (2006) Development of novel brush-type chiral stationary phases based on terpenoid selectors: HPLC evaluation and theoretical investigation of enantioselective binding interactions. Tetrahedron Asymmetr 17(23):3248–3264
Tan X et al (2007) Preparation of a new chiral stationary phase for HPLC based on the (R)-1-phenyl-2-(-4-methylphenyl)ethylamine amide derivative of (S)-valine and 2-chloro-3,5-dinitrobenzoic acid: enantioseparation of amino acid derivatives and pyrethroid insecticides. J Sep Sci 30(12):1888–1892
Forjan DM, Kontrec D, Vinković V (2006) Performance of brush-type HPLC chiral stationary phases with tertiary amide in the connecting tether. Chirality 18(10):857–869
Pinto M et al (2011) Fases Estacionárias Quirais baseadas em Derivados Xantónicos, in Boletim da Propriedade Industrial no 2011/01/21. Portugal
Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12(21):2517–2538
Pinto MMM, Castanheiro RAP (2009) Natural prenylated xanthones: chemistry and biological activities. In: Brahmachari G (ed) Natural products, chemistry, biochemistry and pharmacology. Narosa Publishing House, West Bengal, pp 520–675
Pinto E et al (2011) Antifungal activity of xanthones: evaluation of their effect on ergosterol biosynthesis by high-performance liquid chromatography. Chem Biol Drug Des 77(3):212–222
Paiva AM et al (2012) Prenylated xanthones: antiproliferative effects and enhancement of the growth inhibitory action of 4-hydroxytamoxifen in estrogen receptor-positive breast cancer cell line. Med Chem Res 21(5):552–558
Castanheiro RAP et al (2007) Dihydroxyxanthones prenylated derivatives: synthesis, structure elucidation, and growth inhibitory activity on human tumor cell lines with improvement of selectivity for MCF-7. Bioorg Med Chem 15(18):6080–6088
Correia-Da-Silva M et al (2011) Polysulfated xanthones: multipathway development of a new generation of dual anticoagulant/antiplatelet agents. J Med Chem 54(15):5373–5384
Costa E et al (2010) Synthesis of xanthones and benzophenones as inhibitors of tumor cell growth. Lett Drug Des Discovery 7(7):487–493
Palmeira A et al (2010) Insights into the in vitro antitumor mechanism of action of a new pyranoxanthone. Chem Biol Drug Des 76(1):43–58
Palmeira A et al (2012) Dual inhibitors of P-glycoprotein and tumor cell growth: (Re)discovering thioxanthones. Biochem Pharmacol 83(1):57–68
Marona H et al (2008) Anticonvulsant activity of some xanthone derivatives. Bioorg Med Chem 16(15):7234–7244
Marona H (1998) Synthesis and anticonvulsant effects of some aminoalkanolic derivatives of xanthone. Pharmazie 53(10):672–676
Pinto MMM, Sousa EP (2003) Natural and synthetic xanthonolognoids: chemistry and biological activities. Curr Med Chem 10(1):1–12
Acknowledgments
FCT—Fundação para a Ciência e a Tecnologia under the project CEQUIMED-PEst-OE/SAU/UI4040/2011.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fernandes, C., Tiritan, M.E. & Pinto, M. Small Molecules as Chromatographic Tools for HPLC Enantiomeric Resolution: Pirkle-Type Chiral Stationary Phases Evolution. Chromatographia 76, 871–897 (2013). https://doi.org/10.1007/s10337-013-2469-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10337-013-2469-8