[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

In order to estimate the satellite clock offset in a real-time mode, a new algorithm of adaptively robust Kalman filter with classified adaptive factors for clock offset estimation is proposed. Compared with standard Kalman filter clock offset model, the new method can detect and control outliers and clock jumps automatically in real-time. Moreover, the clock model parameters, which contain the clock offset, clock speed and clock shift, are classified to decide the adaptive factors in the new model. Thus, clock jumps with different characteristics can be distinguished more effectively. Meanwhile, the dynamic noise characteristics of clock offset series are used for stochastic modeling. An actual numerical example is presented, which shows that the proposed filter can give a better performance than other commonly used filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cui XQ, Yang YX (2006) Adaptively robust filtering with classified adaptive factors. Prog Nat Sci 16(4):490–494

    Google Scholar 

  • Cunningham JP, Swift ER, Mueller F (1998) Improvement of the NIMA precise orbit and clock estimates. In: Proceedings of the 11th international technical meeting of the satellite division of the institute of navigation (ION GPS 1998), Nashville, pp 1587–1596

  • Dach R, Hugentobler U, Schildknecht T, Bernier LG, Dudle G (2005) Precise continuous time and frequency transfer using GPS carrier phase. In: Proceedings of the 2005 IEEE international frequency control symposium and exposition, Vancouver, 29–31, August, pp 329–336

  • Defraigne P, Bruyninx C (2007) On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions. GPS Solut 11:239–249

    Article  Google Scholar 

  • Guo HR (2006) Study on the analysis theories and algorithms of the time and frequency characterization for atomic clocks of navigation satellites. Dissertation, Information Engineering University, Zhengzhou

  • Guo HR, Yang YX (2009) Analyses of main error sources on time-domain frequency stability for atomic clocks of navigation satellites. Geomat Inf Sci Wuhan Univ 34(2):218–221

    Google Scholar 

  • Guyennon N, Cerretto G, Tavella P, Lahaye F (2009) Further characterization of the time transfer capabilities of precise point positioning (PPP): the sliding batch procedure. IEEE Trans Ultrason Ferroelectr Freq Contr 56(8):1634–1641

    Article  Google Scholar 

  • Hatten G, Taylor J (2000) Navigation upload performance, In: Proceedings of the 13th international technical meeting of the satellite division of The Institute of Navigation (ION GPS 2000), Salt Lake City, pp 425–431

  • He HB, Yang YX (1998) Robust estimation for sequential adjustment. Eng Surv Mapp 7(1):36–40

    Google Scholar 

  • Huang GW, Zhang Q, Xu GC, Wang L (2008) IGS precise satellite clock model fitting and its precision by using spectral analysis method. Geomat Inf Sci Wuhan Univ 33(5):496–499

    Google Scholar 

  • Huang GW, Zhang Q, Wang JG (2009) Research on estimation and precision of GPS satellite clock error. J Geodesy Geodyn 29(6):118–122

    Google Scholar 

  • Ji SB, Zhu WY, Xiong YQ (2001) Calculate and application of the GPS satellite clock offset. Chin J Space Sci 21(3):42–48

    Google Scholar 

  • Koppang PA, Matsakis D, Miranian M (2000) Alternate algorithms for steering to make GPS time. In: Proceedings of the 13th international technical meeting of the satellite division of the Institute of Navigation (ION GPS 2000), Salt Lake City, pp 933–936

  • Kouba J, Springer T (2001) New IGS station and satellite clock combination. GPS Solut 4(4):31–36. doi:10.1007/PL00012863

    Article  Google Scholar 

  • Liu L (2006) Relativistic theory of time transfer and techniques of clock synchronization. Dissertation, Information Engineering University, Zhengzhou

  • Ou JK (1996) Design of a new scheme of robust estimation by three steps. Acta Geodaetica et Cartographica Sinica 25(3):173–179

    Google Scholar 

  • Ray J, Senior K (2003) IGS/BIPM Pilot Project: GPS carrier phase for time/frequency transfer and time scale formation, 4th International time scale algorithms symposium, at BIPM, Sevres, France, 18–19 March 2002, Metrologia 40(3):270–288 (Erratum 40(4):205)

  • Senior K, Koppang PA, Ray J (2003) Developing an IGS time scale. IEEE Trans Ultrason Ferroelectr Freq Control 50(6):585–593

    Article  Google Scholar 

  • Senior K, Ray J (2001) Accuracy and precision of carrier phase clock estimates. In: Proceedings of the 33rd precise time and time interval applications and planning meeting, pp 199–217

  • Senior K, Koppang PA, Matsakis D, Ray J (2001) Developing an IGS time scale. In: Proceedings of the 2001 IEEE international frequency control Symposium and PDA exhibition, pp 211–218

  • Wu SW (2006) Auto-adaptive sequential robust estimation. Bull Surv Mapp 1:1–4

    Google Scholar 

  • Yang YX (1994) Robust estimation for dependent observations. Manuscripta Geodaetica 19:10–17

    Google Scholar 

  • Yang YX (1996) Adaptively robust least squares estimation. Acta Geodaetica et Cartographica Sinica 25(3):206–211

    Google Scholar 

  • Yang YX (1999) Robust estimation of geodetic datum transformation. J Geodesy 73:268–274

    Article  Google Scholar 

  • Yang YX (2003) Properties of adaptive robust filtering for kinematic GPS positioning. Acta Geodaetica et Cartographica Sinica 32(3):189–192

    Google Scholar 

  • Yang YX (2006) Adaptive navigation and kinematic positioning. Publishing House of Surveying and Mapping, Beijing, Beijing

    Google Scholar 

  • Yang YX, Cui XQ (2008) Adaptively robust filter with multi adaptive factors. Sur Rev 40(309):260–270

    Article  Google Scholar 

  • Yang YX, Gao WG (2005) Influence comparison of adaptive factors on navigation results. J Navig 58(3):471–478

    Article  Google Scholar 

  • Yang YX, Gao WG (2006) An optimal adaptive Kalman filter. J Geodesy 80:177–183

    Article  Google Scholar 

  • Yang YX, He HB, Xu GC (2001a) Adaptively robust filtering for kinematic geodetic positioning. J Geodesy 75(2/3):109–116

    Article  Google Scholar 

  • Yang YX, He HB, Xu TH (2001b) On adaptive kinematic filtering. Acta Geodaetica et Cartographica Sinica 30(4):293–298

    Google Scholar 

  • Yang YX, Song LJ, Xu TH (2002a) Robust estimator for correlated observations based on bifactor equivalent weights. J Geodesy 76(6–7):353–358

    Article  Google Scholar 

  • Yang YX, Song LJ, Xu TH (2002b) Robust parameter estimation for geodetic correlated observation. Acta Geodaetica et Cartographica Sinica 31(2):95–99

    Google Scholar 

  • Zheng ZY, Chen YQ, Lu XS (2008) An improved grey model for the prediction of real-time GPS satellite clock bias. Acta Astronomica Sinica 49(3):P306–P320

    Google Scholar 

  • Zhou JW (1989) Classical theory of errors and robust estimation. Acta Geodaetica et Cartographica Sinica 18(2):115–120

    Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant No. 41020144004, 40841021 and 40902081), National High Technology Research and Development Program of China (Grant No. 2007AA12Z331), and also by the Special Fund for Basic Scientific Research of Central Colleges (Grant No. CHD2010ZY001, Chang’an University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanwen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Zhang, Q. Real-time estimation of satellite clock offset using adaptively robust Kalman filter with classified adaptive factors. GPS Solut 16, 531–539 (2012). https://doi.org/10.1007/s10291-012-0254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-012-0254-z

Keywords

Navigation