[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Weighted discriminators for GNSS BOC signal tracking

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Modern Global Navigation Satellite System including Galileo and GPS III will employ multiplexed binary offset carrier (MBOC) modulation to achieve spectrum separation and enhanced tracking performance. A challenge of the MBOC or BOC signal tracking is the presence of ambiguities due to multiple sidepeaks of the autocorrelation functions. Several different techniques including multi-correlator and double estimator schemes have been proposed to address the ambiguity issue. We propose a class of ambiguity-free code tracking techniques by exploiting the unique features of the BOC modulation. In the proposed architecture, the incoming BOC-modulated signals are correlated with BOC-modulated replica and the spreading codes, respectively. Through a multiplicative combination strategy of the two correlator outputs, a noncoherent weighted discriminator is formed and shown to possess the ambiguity-free property. The multipath effect is assessed and compared with existing early-minus-late power and autocorrelation sidepeak cancellation technique discriminators. The noise effects of the theory and simulation are also discussed. In order to further verify the proposed scheme, a set of field data of a Galileo in-orbit validation satellite is collected and processed. It is demonstrated that the proposed method is simple to implement, free from ambiguities, and yields acceptable performance in the presence of multipath and noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Avila-Rodriguez JA, Hein GW, et al (2008) The MBOC modulation: the final touch to the Galileo frequency and signal plan. Navigation: J Inst Navigat 55(1):14–28

    Google Scholar 

  • Betz JW (2001) Binary offset carrier modulations for radionavigation. Navigation: J Inst Navigat 48(4):227–246

    Google Scholar 

  • Betz JW, Kolodziejski KR (2000) Extended theory of early-late code tracking for a bandlimited GPS receiver. Navigation: J Inst Navigat 47(3):211–226

    Google Scholar 

  • Borre K, Akos DM et al (2007) A software-defined GPS and Galileo receiver—a single frequency approach. Birkhäuser, Boston

    Google Scholar 

  • Dovis F, Mulassano P, Lo Presti L (2005) A novel algorithm for the code tracking of BOC(n, n) modulated signals. In: Proceedings of the 18th international technical meeting of the satellite division of the institute of navigation. Long Beach, CA, USA

    Google Scholar 

  • Hein GW, Avila-Rodriguez JA, et al (2006) MBOC: the new optimized spreading modulation recommended for GALILEO L1 OS and GPS L1C. In: Proceedings of the IEEE/ION position, location, and navigation symposium

  • Heiries V, Roviras D, et al (2004) Analysis of non ambiguous BOC signal acquisition performance. In: Proceedings of the 17th international technical meeting of the satellite division of the institute of navigation, Long Beach, CA

  • Hodgart MS, Blunt PD, et al (2008) Double estimator—a new receiver principle for tracking BOC signals. Inside GNSS, pp 26–36

  • Holmes JK (1999) Code Tracking loop performance including the effects of channel filtering and gaussian interference. Proceedings of the IAIN world congress in association with the ION annual meeting, San Diego, CA

    Google Scholar 

  • Holmes JK (2007) Spread spectrum systems for GNSS and wireless communications. Artech House, Boston, USA

    Google Scholar 

  • Juang JC (2008) Multi-objective approach in GNSS code discriminator design. IEEE Trans Aerospace Electron Syst 44(2):481–492

    Article  Google Scholar 

  • Juang JC, Chen YH et al (2010) Design and implementation of an adaptive code discriminator in a DSP FPGA-based Galileo receiver. GPS Solut 14(3):255–266

    Article  Google Scholar 

  • Julien O (2005) Design of Galileo L1F receiver tracking loops. Ph. D. Dissertation, Department of Geomatics Engineering, University of Calgary

  • Julien O, Macabiau C et al (2007) ASPeCT: unambiguous Sine-BOC(n, n) acquisition/tracking technique for navigation applications. IEEE Trans Aerospace Electron Syst 43(1):150–162

    Article  Google Scholar 

  • Kao TL, Chen YH, et al (2007) A DSP/FPGA design for the acquisition and tracking of GIOVE-A signals. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation, Fort Worth, TX

  • Kaplan ED, Hegarty CJ (2006) Understanding GPS: principle and application, 2nd edn. Artech House, Boston, pp 227–229

    Google Scholar 

  • Martin N, Leblond V, et al (2003) BOC(x,y) signal acquisition techniques and performances. In: Proceedings of the 16th international technical meeting of the satellite division of the institute of navigation, Portland, OR

  • Meyr H, Ascheid G (1990) Synchronization in digital communications phase-, frequency-locked loops, and amplitude control. Wiley, New York, vol 1

  • Wu J, Rizos C, Dempster AG (2008) Effect of pre-correlation filter on BOC-Gated-PRN discriminator. In: The 9th international conference on signal processing (ICSP 2008), Beijing

Download references

Acknowledgments

This work has been supported by the National Science Council, Taiwan under contract NSC 98-2221-E-006-194-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Ching Juang.

Appendix: Derivation of the tracking error variance

Appendix: Derivation of the tracking error variance

The appendix derives the tracking error variance of the code tracking loop in the presence of additive Gaussian noise. The derivation is similar to the procedure adopted in (Holmes 1999; Holmes 2007; Julien 2005). Neglecting the multipath term, after substituting (5), (6), (10), and (11) into (24), the weighted discriminator can be expressed as

$$ \begin{aligned} y_{\text{weighted}} (\delta ) = & C\left[ {w_{1} \Uppsi (\delta - \alpha_{1} T_{c} ) + w_{2} \Uppsi (\delta - \alpha_{2} T_{c} )} \right]\left[ {\Uplambda \left( {\delta - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\delta + \frac{d}{2}T_{c} } \right)} \right] \\ & + \sqrt C \left[ {w_{1} \Uppsi (\delta - \alpha_{1} T_{c} ) + w_{2} \Uppsi (\delta - \alpha_{2} T_{c} )} \right]\left[ {(v_{{I_{B1} }} - v_{{I_{B2} }} )\cos \phi_{0} + (v_{{Q_{B1} }} - v_{{Q_{B2} }} )\sin \phi_{0} } \right] \\ & + \sqrt C \left[ {\Uplambda \left( {\delta - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\delta + \frac{d}{2}T_{c} } \right)} \right]\left[ {(w_{1} v_{{I_{W1} }} + w_{2} v_{{I_{W2} }} )\cos \phi_{0} + (w_{1} v_{{Q_{W1} }} + w_{2} v_{{Q_{W2} }} )\sin \phi_{0} } \right] \\ & + (w_{1} v_{{I_{W1} }} + w_{2} v_{{I_{W2} }} )(v_{{I_{B1} }} - v_{{I_{B2} }} ) + (w_{1} v_{{Q_{W1} }} + w_{2} v_{{Q_{W2} }} )(v_{{Q_{B1} }} - v_{{Q_{B2} }} ) \\ \end{aligned} $$
(33)

In evaluating the tracking error variance, it can be assumed, without loss of generality, that \( \phi_{0} \approx 0 \). Thus, the weighted discriminator can be rewritten as

$$ \begin{aligned} y_{\text{weighted}} (\delta ) = & C\left\{ {\left[\vphantom{\frac{d}{2}} {w_{1} \Uppsi (\delta - \alpha_{1} T_{c} ) + w_{2} \Uppsi (\delta - \alpha_{2} T_{c} )} \right]\left[ {\Uplambda \left( {\delta - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\delta + \frac{d}{2}T_{c} } \right)} \right]} \right\} \\ & + \left\{ {\left( {w_{1} v_{{I_{W1} }} + w_{2} v_{{I_{W2} }} } \right)\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) + \left( {w_{1} v_{{Q_{W1} }} + w_{2} v_{{Q_{W2} }} } \right)\left( {v_{{Q_{B1} }} - v_{{Q_{B2} }} } \right)} \right\} \\ & + \sqrt C \left\{ \begin{gathered} \left[ {\Uplambda \left( {\delta - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\delta + \frac{d}{2}T_{c} } \right)} \right]\left( {w_{1} v_{{I_{W1} }} + w_{2} v_{{I_{W2} }} } \right) \\ + \left[ {w_{1} \Uppsi (\delta - \alpha_{1} T_{c} ) + w_{2} \Uppsi (\delta - \alpha_{2} T_{c} )} \right]\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) \\ \end{gathered} \right\} \\ \end{aligned} $$
(34)

For convenience, the expression (34) is expressed as

$$ \begin{aligned} y_{\text{weighted}} (\delta ) = & C\left\{ {\left[\vphantom{\frac{d}{2}} {w_{1} \Uppsi (\delta - \alpha_{1} T_{c} ) + w_{2} \Uppsi (\delta - \alpha_{2} T_{c} )} \right]\left[ {\Uplambda \left( {\delta - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\delta + \frac{d}{2}T_{c} } \right)} \right]} \right\} \\ & + N_{1} + \sqrt C N_{2} \\ \end{aligned} $$
(35)

where

$$ N_{1} = \left( {w_{1} v_{{I_{W1} }} + w_{2} v_{{I_{W2} }} } \right)\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) + \left( {w_{1} v_{{Q_{W1} }} + w_{2} v_{{Q_{W2} }} } \right)\left( {v_{{Q_{B1} }} - v_{{Q_{B2} }} } \right) $$
(36)
$$ \begin{aligned} N_{2} = \,& \left( {w_{1} v_{{I_{W1} }} + w_{2} v_{{I_{W2} }} } \right)\left[ {\Uplambda \left( {\delta - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\delta + \frac{d}{2}T_{c} } \right)} \right] \\ & + \left[ {w_{1} \Uppsi (\delta - \alpha_{1} T_{c} ) + w_{2} \Uppsi (\delta - \alpha_{2} T_{c} )} \right]\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) \\ \end{aligned} $$
(37)

From (Julien 2005), the tracking error variance is given by

$$ \sigma_{\text{weighted}}^{2} =\, \frac{{2B_{L} \left( {1 - 0.5B_{L} T} \right)T\sigma_{{{\text{y}}_{\text{weighted}} }}^{2} }}{{K_{{{\text{y}}_{\text{weighted}} }}^{2} }} $$
(38)

where \( K_{{y_{\text{weighted}} }} \) is the loop gain associated with the weighted discriminator, and \( \sigma_{{{\text{y}}_{\text{weighted}} }} \) is the discriminator output standard deviation. The loop gain can be computed as

$$ \begin{aligned} K_{{y_{\text{weighted}} }} = & \left. {\frac{{dy_{\text{weighted}} \left( \delta \right)}}{d\delta }} \right|_{\delta = 0} \\ = & C\left( {w_{1} \Uppsi^{'} ( - \alpha_{1} T_{c} ) + w_{2} \Uppsi^{'} ( - \alpha_{2} T_{c} )} \right)\left( {\Uplambda \left( { - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\frac{d}{2}T_{c} } \right)} \right) \\ & + C\left( {w_{1} \Uppsi ( - \alpha_{1} T_{c} ) + w_{2} \Uppsi ( - \alpha_{2} T_{c} )} \right)\left( {\Uplambda^{'} \left( { - \frac{d}{2}T_{c} } \right) - \Uplambda^{'} \left( {\frac{d}{2}T_{c} } \right)} \right) \\ \end{aligned} $$
(39)

Note that the correlation function of \( \Uplambda ( \cdot ) \) is symmetric, that is,

$$ \Uplambda \left( { - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\frac{d}{2}T_{c} } \right) = 0 $$
(40)

Thus, the gain can be simplified as

$$ K_{{y_{\text{weighted}} }} = C\Upgamma (0)\left( {\Uplambda^{'} \left( { - \frac{d}{2}T_{c} } \right) - \Uplambda^{'} \left( {\frac{d}{2}T_{c} } \right)} \right) $$
(41)

where \( \Uplambda^{'} \left( { - \frac{d}{2}T_{c} } \right) = \left. {\frac{{{\text{d}}\Uplambda \left( {\delta - \frac{d}{2}T_{c} } \right)}}{{{\text{d}}\delta }}} \right|_{\delta = 0} \) and \( \Uplambda^{'} \left( {\frac{d}{2}T_{c} } \right) = \left. {\frac{{{\text{d}}\Uplambda \left( {\delta + \frac{d}{2}T_{c} } \right)}}{{{\text{d}}\delta }}} \right|_{\delta = 0} \). Substituting (8) into (41) and after some manipulations, the slope can be shown to be equal to

$$ K_{{y_{\text{weighted}} }} = 4\pi C\Upgamma (0)\int\limits_{ - \infty }^{\infty } {fH(f)S_{g} (f)\sin \left( {\pi fdT_{c} } \right){\kern 1pt} {\text{d}}f} $$
(42)

From (35), the variance of weighted discriminator can be expressed as

$$ \sigma_{{{\text{y}}_{\text{weighted}} }}^{2} = \sigma_{{N_{1} }}^{2} + C\sigma_{{N_{2} }}^{2} + 2\sqrt C \sigma_{{N_{1} N_{2} }} $$
(43)

The variance of \( N_{1} \) is given by

$$ \sigma_{{N_{1} }}^{2} = E\left\{ {N_{1} \left( t \right)N_{1} \left( {t - x} \right)} \right\} - E\left\{ {N_{1} \left( t \right)} \right\}E\left\{ {N_{1} \left( {t - x} \right)} \right\} $$
(44)

Let \( A_{1} = w_{1} v_{{I_{W1} }} \left( t \right) + w_{2} v_{{I_{W2} }} \left( t \right) \) and \( A_{2} = v_{{I_{B1} }} \left( t \right) - v_{{I_{B2} }} \left( t \right) \). Because the Q components are identically distributed and independent from the I components, the terms in (44) can be calculated as

$$ E\left\{ {N_{1} \left( t \right)N_{1} \left( {t - x} \right)} \right\} = 2E\left\{ {A_{1}^{2} } \right\}E\left\{ {A_{2}^{2} } \right\} + 6\left( {E\left\{ {A_{1} A_{2} } \right\}} \right)^{2} $$
(45)
$$ E\left\{ {N_{1} \left( t \right)} \right\}E\left\{ {N_{1} \left( {t - x} \right)} \right\} = 4\left( {E\left\{ {A_{1} A_{2} } \right\}} \right)^{2} $$
(46)

Assuming that the code delay error is small, \( N_{2} \) can be reduced to

$$ \begin{aligned} N_{2} = & \left( {w_{1} v_{{I_{W1} }} + w_{2} v_{{I_{W2} }} } \right)\left[ {\Uplambda \left( { - \frac{d}{2}T_{c} } \right) - \Uplambda \left( {\frac{d}{2}T_{c} } \right)} \right] + \left[ {w_{1} \Uppsi ( - \alpha_{1} T_{c} ) + w_{2} \Uppsi ( - \alpha_{2} T_{c} )} \right]\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) \\ = & \left[ {w_{1} \Uppsi ( - \alpha_{1} T_{c} ) + w_{2} \Uppsi ( - \alpha_{2} T_{c} )} \right]\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) \\ \end{aligned} $$
(47)

Owing to (40), \( N_{2} \) can be simplified as:

$$ \begin{aligned} N_{2} = \,& \left[ {w_{1} \Uppsi ( - \alpha_{1} T_{c} ) + w_{2} \Uppsi ( - \alpha_{2} T_{c} )} \right]\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) \\ =\, & \Upgamma \left( 0 \right)\left( {v_{{I_{B1} }} - v_{{I_{B2} }} } \right) \\ \end{aligned} $$
(48)

In a similar way, the variance of \( N_{2} \) can be expressed as:

$$ \sigma_{{N_{2} }}^{2} = \Upgamma^{2} \left( 0 \right)E\left\{ {A_{2}^{2} } \right\} $$
(49)

The results of \( E\left\{ {A_{1} A_{2} } \right\} \), \( E\left\{ {A_{1}^{2} } \right\} \), and \( E\left\{ {A_{2}^{2} } \right\} \) can be derived by using the spectral characteristic of the input signal/noise. The covariance at each correlator can be expressed as:

$$ E\left\{ {v_{{I_{Bk} }} \left( t \right)v_{{I_{Bl} }} \left( {t - x} \right)} \right\} = \frac{{N_{0} }}{2T}\tilde{R}_{g} \left( {\left( {d_{l} - d_{k} } \right)T_{c} } \right) $$
(50)
$$ E\left\{ {v_{{I_{Bk} }} \left( t \right)v_{{I_{Wl} }} \left( {t - x} \right)} \right\} = \frac{{N_{0} }}{2T}\tilde{R}_{x} \left( {\left( {\alpha_{l} - d_{k} } \right)T_{c} } \right) $$
(51)
$$ E\left\{ {v_{{I_{Wk} }} \left( t \right)v_{{I_{Wl} }} \left( {t - x} \right)} \right\} = \frac{{N_{0} }}{2T}\tilde{R}_{c} \left( {\left( {\alpha_{l} - \alpha_{k} } \right)T_{c} } \right) $$
(52)

where

$$ \tilde{R}_{g} \left( \tau \right) = \int\limits_{ - \infty }^{\infty } {S_{g} (f)\left| {H(f)} \right|^{2} {\text{e}}^{j2\pi f\tau } {\kern 1pt} {\text{d}}f} $$
(53)
$$ \tilde{R}_{x} \left( \tau \right) = \int\limits_{ - \infty }^{\infty } {S_{x} (f)\left| {H(f)} \right|^{2} {\text{e}}^{j2\pi f\tau } {\kern 1pt} {\text{d}}f} $$
(54)
$$ \tilde{R}_{c} \left( \tau \right) = \int\limits_{ - \infty }^{\infty } {S_{c} (f)\left| {H(f)} \right|^{2} {\text{e}}^{j2\pi f\tau } {\kern 1pt} {\text{d}}f} $$
(55)

In the above, \( S_{c} ( \cdot ) \) is the power spectral density of the PRN waveform which is given by \( S_{c} (f) = T_{c} {\text{sinc}}^{2} \left( {\pi fT_{c} } \right) \).

The covariance between \( N_{1} \) and \( N_{2} \) is zero since the product of \( N_{1} \) and \( N_{2} \) leads to a polynomial with monomials of odd order in zero mean Gaussian random variables. Then,

$$ \sigma_{{N_{1} N_{2} }} = 0 $$
(56)

After some calculations, (44) and (49) can be, respectively, written as:

$$ \sigma_{{N_{1} }}^{2} = 2\left( {\frac{{N_{0} }}{2T}} \right)^{2} \left( \begin{gathered} 2\left( {\tilde{R}_{g} \left( 0 \right) - \tilde{R}_{g} \left( {dT_{c} } \right)} \right) \times \left( {w_{1}^{2} \tilde{R}_{c} \left( 0 \right) + 2w_{1} w_{2} \tilde{R}_{c} \left( {\left( {\alpha_{2} - \alpha_{1} } \right)T_{c} } \right) + w_{2}^{2} \tilde{R}_{c} \left( 0 \right)} \right) \\ + \left[ \begin{gathered} w_{1} \left( {\tilde{R}_{x} \left( {\left( {\frac{d}{2} - \alpha_{1} } \right)T_{c} } \right) - \tilde{R}_{x} \left( {\left( { - \frac{d}{2} - \alpha_{1} } \right)T_{c} } \right)} \right) \hfill \\ + w_{2} \left( {\tilde{R}_{x} \left( {\left( {\frac{d}{2} - \alpha_{2} } \right)T_{c} } \right) - \tilde{R}_{x} \left( {\left( { - \frac{d}{2} - \alpha_{2} } \right)T_{c} } \right)} \right) \hfill \\ \end{gathered} \right]^{2} \\ \end{gathered} \right) $$
(57)

and

$$ \begin{aligned} \sigma_{{N_{2} }}^{2} = & \frac{{N_{0} }}{T}\Upgamma \left( 0 \right)^{2} \left( {\tilde{R}_{g} \left( 0 \right) - \tilde{R}_{g} \left( {dT_{c} } \right)} \right) \\ = & 2\frac{{N_{0} }}{T}\Upgamma \left( 0 \right)^{2} \int\limits_{ - \infty }^{\infty } {S_{g} (f)\left| {H(f)} \right|^{2} \sin^{2} \left( {\pi fdT_{c} } \right){\kern 1pt} {\text{d}}f} \\ \end{aligned} $$
(58)

Using (56), (57), and (58), the variance of the weighted discriminator output can be expressed as:

$$ \begin{aligned} \sigma_{{y_{\text{weighted}} }}^{2} =\, & 2CN_{0} \Upgamma \left( 0 \right)^{2} \frac{1}{T}\int\limits_{ - \infty }^{\infty } {S_{g} (f)\left| {H(f)} \right|^{2} \sin^{2} \left( {\pi fdT_{c} } \right){\kern 1pt} {\text{d}}f} \\ & \times \left( \begin{gathered} 1 + \frac{{\left( {w_{1}^{2} \tilde{R}_{c} \left( 0 \right) + 2w_{1} w_{2} \tilde{R}_{c} \left( {\left( {\alpha_{2} - \alpha_{1} } \right)T_{c} } \right) + w_{2}^{2} \tilde{R}_{c} \left( 0 \right)} \right)}}{{\left( {{C \mathord{\left/ {\vphantom {C {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }}} \right)T\Upgamma \left( 0 \right)^{2} }} \hfill \\ + \frac{{\left[ \begin{gathered} w_{1} \left( {\tilde{R}_{x} \left( {\left( {\frac{d}{2} - \alpha_{1} } \right)T_{c} } \right) - \tilde{R}_{x} \left( {\left( { - \frac{d}{2} - \alpha_{1} } \right)T_{c} } \right)} \right) \hfill \\ + w_{2} \left( {\tilde{R}_{x} \left( {\left( {\frac{d}{2} - \alpha_{2} } \right)T_{c} } \right) - \tilde{R}_{x} \left( {\left( { - \frac{d}{2} - \alpha_{2} } \right)T_{c} } \right)} \right) \hfill \\ \end{gathered} \right]^{2} }}{{2\left( {{C \mathord{\left/ {\vphantom {C {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }}} \right)T\Upgamma \left( 0 \right)^{2} \left( {\tilde{R}_{g} \left( 0 \right) - \tilde{R}_{g} \left( {dT_{c} } \right)} \right)}} \hfill \\ \end{gathered} \right) \\ \end{aligned} $$
(59)

Assuming a front-end filter with unity gain within \( \pm {{B_{w} } \mathord{\left/ {\vphantom {{B_{w} } 2}} \right. \kern-\nulldelimiterspace} 2} \) Hz, and substituting (42) and (59) into (38), the code tracking error variance is obtained.

$$ \sigma_{\text{weighted}}^{2} = \frac{{B_{L} \left( {1 - 0.5B_{L} T} \right) \times \int_{{ - {{B_{w} } \mathord{\left/ {\vphantom {{B_{w} } 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{{B_{w} } \mathord{\left/ {\vphantom {{B_{w} } 2}} \right. \kern-\nulldelimiterspace} 2}}} {S_{g} (f)\left| {H(f)} \right|^{2} \sin^{2} \left( {\pi fdT_{c} } \right){\kern 1pt} {\text{d}}f} }}{{\left( {{C \mathord{\left/ {\vphantom {C {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }}} \right)\left( {2\pi \int_{{ - {{B_{w} } \mathord{\left/ {\vphantom {{B_{w} } 2}} \right. \kern-\nulldelimiterspace} 2}}}^{{{{B_{w} } \mathord{\left/ {\vphantom {{B_{w} } 2}} \right. \kern-\nulldelimiterspace} 2}}} {fH(f)S_{g} (f)\sin \left( {\pi fdT_{c} } \right){\kern 1pt} {\text{d}}f} } \right)^{2} }} \times \left( {1 + \frac{{\mu_{1} + \mu_{2} }}{{\left( {{C \mathord{\left/ {\vphantom {C {N_{0} }}} \right. \kern-\nulldelimiterspace} {N_{0} }}} \right)T}}} \right) $$
(60)

where

$$ \mu_{1} = \frac{{\left( {w_{1}^{2} \tilde{R}_{c} \left( 0 \right) + 2w_{1} w_{2} \tilde{R}_{c} \left( {\left( {\alpha_{2} - \alpha_{1} } \right)T_{c} } \right) + w_{2}^{2} \tilde{R}_{c} \left( 0 \right)} \right)}}{{\Upgamma \left( 0 \right)^{2} }} $$
(61)
$$ \mu_{2} = \frac{{\left[ {w_{1} \left( {\tilde{R}_{x} \left( {\left( {\frac{d}{2} - \alpha_{1} } \right)T_{c} } \right) - \tilde{R}_{x} \left( {\left( { - \frac{d}{2} - \alpha_{1} } \right)T_{c} } \right)} \right) + w_{2} \left( {\tilde{R}_{x} \left( {\left( {\frac{d}{2} - \alpha_{2} } \right)T_{c} } \right) - \tilde{R}_{x} \left( {\left( { - \frac{d}{2} - \alpha_{2} } \right)T_{c} } \right)} \right)} \right]^{2} }}{{2\left( {\tilde{R}_{g} \left( 0 \right) - \tilde{R}_{g} \left( {dT_{c} } \right)} \right)\Upgamma \left( 0 \right)^{2} }} $$
(62)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, TL., Juang, JC. Weighted discriminators for GNSS BOC signal tracking. GPS Solut 16, 339–351 (2012). https://doi.org/10.1007/s10291-011-0235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-011-0235-7

Keywords

Navigation