[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The precise orbit determination antennas of F3/C and GRACE-A satellites are from the same manufacturer, but are installed in different configurations. The current orbit accuracy of F3/C is 3 cm at arcs with good GPS data, compared to 1 cm of GRACE, which has a larger ratio of usable GPS data. This paper compares the qualities of GPS observables from F3/C and GRACE. Using selected satellites and time spans, the following average values for the satellite F3/C and satellite A of GRACE are obtained: multipath effect on the pseudorange P1, 0.78 and 0.38 m; multipath effect on the pseudorange P2, 1.03 and 0.69 m; occurrence frequency of cycle slip, 1/29 and 1/84; standard error of unit weight, 4 and 1 cm; dynamic–kinematic orbit difference, 10 and 2 cm. For gravity determination using F3/C GPS data, a careful selection of GPS data is critical. With six satellites in orbit, F3/C’s large amount of GPS data will make up the deficiency in data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bock H (2004) Efficient methods for determining precise orbits of low earth orbiters using the global positioning system. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 65, Schweizerische Geodätische Kommission, Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, Zürich

  • Chao BF, Pavlis EC, Hwang C, Liu CC, Shum CK, Tseng CL, Yang M (2000) COSMIC: geodetic applications in improving earth’s gravity model. Terrestrial Atmospheric Ocean Sci 11:365–378

    Google Scholar 

  • Comp CJ, Axelrad P (1998) Adaptive SNR-based carrier phase multipath mitigation technique. IEEE Trans Aerosp Electron Syst 34:264–276

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software-version 5.0. Astronomical Institute, University of Bern, Switzerland

    Google Scholar 

  • Dach R, Brockmann E, Schaer S, Beutler G, Meindl M, Prange L, Bock H, Jäggi A, Ostini L (2009) GNSS processing at CODE: status report. J Geod 83(3–4):353–365. doi:10.1007/s00190-008-0281-2

    Article  Google Scholar 

  • Estey LH, Meerten CM (1999) TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solutions 3(1):42–49

    Article  Google Scholar 

  • Fong CJ, Yang SK, Chu CH, Huang CY, Yeh JJ, Lin CT, Kuo TC, Liu TY, Yen NL, Chen SS, Kuo YH, Liou YA, Chi S (2008) FORMOSAT-3/COSMIC constellation spacecraft system performance: after 1 year in orbit. IEEE Trans Geosci Remote Sens 46:3380–3394

    Article  Google Scholar 

  • Gurtner W (1994) RINEX: the receiver-independent exchange format. GPS World 4:48–52

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer Wien New York, ISBN 3-211-83472-9

  • Hwang C, Lin TJ, Tseng TP, Chao BF (2008) Modeling orbit dynamics of FORMOSAT-3/COSMIC satellites for recovery of temporal gravity variations. IEEE Trans Geosci Remote Sens 46:3412–3423

    Article  Google Scholar 

  • Hwang C, Tseng TP, Lin T, Švehla D, Schreiner B (2009) Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission GPS. J Geodesy 83(5):477–489. doi:10.1007/s00190-008-0256-3

    Article  Google Scholar 

  • Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modeling techniques for low Earth orbiters. J Geodesy 80(1):47–60. doi:10.1007/s00190-006-0029-9

    Article  Google Scholar 

  • Jäggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612–1619

    Article  Google Scholar 

  • Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Montenbruck O, Kroes R (2003) In-flight performance analysis of the CHAMP BlackJack GPS Receiver. GPS Solutions 7:74–86. doi:10.1007/s10291-003-0055-5

    Article  Google Scholar 

  • Ogaja C, Hedfors J (2007) TEQC multipath metrics in MATLAB. GPS Solutions 11:215–222. doi:10.1007/s10291-006-0052-6

    Article  Google Scholar 

  • Švehla D, Rothacher M (2003) Kinematic and reduced–dynamic precise orbit determination of low Earth orbiters. Adv Geosci 1:47–56

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Space Organization of Taiwan, under the project “Precise orbit determination and the gravity field determination from FORMOSAT-3/COSMIC data,” contract number 98-NSPO(B)-IC-FA07-01(J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheinway Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, C., Tseng, TP., Lin, TJ. et al. Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination. GPS Solut 14, 121–131 (2010). https://doi.org/10.1007/s10291-009-0145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-009-0145-0

Keywords

Navigation