Abstract
Results of the estimation of azimuth-dependent phase center variations (PCVs) of GPS satellite antennas using global GPS data are presented. Significant variations of up to ±3–4 mm that are demonstrated show excellent repeatability over eight years. The application of the azimuthal PCVs besides the nadir-dependent ones will lead to a further reduction in systematic antenna effects. In addition, the paper focuses on the benefit of a possible transition from relative to absolute PCVs. Apart from systematic changes in the global station coordinates, one can expect the GPS results to be less dependent on the elevation cut-off angle. This, together with the significant reduction of tropospheric zenith delay biases between GPS and VLBI, stands for an important step toward more consistency between different space geodetic techniques.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aparicio M, Brodie P, Doyle L, Rajan J, Torrione P (1995) GPS satellite and payload. In: Parkinson BW, Spilker JJ (eds) Global positioning system: theory and applications, vol I. American Institute of Aeronautics and Astronautics, Inc., Washington, pp 209–244
Bouma HR (2002) Ground-based GPS in climate research. Technical report no. 456L, licentiate thesis at the School of Electrical and Computer Engineering, Chalmers University of Technology, Göteborg
Czopek FM, Shollenberger S (1993) Description and performance of the GPS Block I and II L-Band antenna and link budget. In: Proceedings of ION GPS-93, The Institute of Navigation, Salt Lake City, Utah, pp 37–43
Degnan JJ, Pavlis EC (1994) Laser ranging to GPS satellites with centimeter accuracy. GPS World 5(9) 62–70
Elgered G, Haas R (2003) The geodetic VLBI network station at the Onsala space observatory—activities during 2002. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry, Bundesamt für Kartographie und Geodäsie, Frankfurt/Leipzig, pp 61–66
Elósegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE, Shapiro II (1995) Geodesy using the global positioning system: the effects of signal scattering on estimates of site position. J Geophys Res 100(B6):9921–9934
Ge M, Gendt G (2005) Estimation and validation of the IGS absolute antenna phase center variations. In: Meindl M (ed) Proceedings of the IGS Workshop and Symposium 2004 (in press)
Haas R, Elgered G, Gradinarsky L, Johansson J (2003) Assessing long term trends in the atmospheric water vapor content by combining data from VLBI, GPS, radiosondes and microwave radiometry. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Frankfurt/Leipzig, pp 279–288
Haines B, Bar-Sever Y, Bertiger W, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. Marine Geodesy 27(1–2): 299–318. DOI 10.1080/01490410490465300
Hatanaka Y, Sawada M, Horita A, Kusaka M, Johnson JM, Rocken C (2001) Calibration of antenna-radome and monument-multipath effect of GEONET—part 2: evaluation of the phase map by GEONET data. Earth Planets Space 53(1):23–30
Hugentobler U, Schaer S, Fridez P (2001) Bernese GPS Software, version 4.2. Astronomical Institute, University of Bern
Mader GL (1999) GPS antenna calibration at the National Geodetic Survey. GPS solutions 3(1):50–58
Mader GL, Czopek FM (2002) The Block IIA satellite—calibrating antenna phase centers. GPS World 13(5):40–46
Rothacher M (2001) Comparison of absolute and relative antenna phase center variations. GPS solutions 4(4):55–60
Rummel R, Drewes H, Bosch W, Hornik H (2000) Towards an Integrated Global Geodetic Observing System (IGGOS). International Association of Geodesy Symposia, Vol. 120, Springer-Verlag, Heidelberg, pp 1–261
Rummel R, Drewes H, Beutler G (2002) Integrated Global Geodetic Observing System (IGGOS): a candidate IAG project. In: Adam J, Schwarz K-P (eds) Vistas for geodesy in the new millennium. International Association of Geodesy Symposia, Vol 125. Springer-Verlag, New York, pp 609–614
Saastamoinen J (1973) Contribution to the theory of atmospheric refraction. Bulletin Géodésique 107:13–34
Schmid R, Rothacher M (2003) Estimation of elevation-dependent satellite antenna phase center variations of GPS satellites. Journal of Geodesy 77(7–8):440–446. DOI 10.1007/s00190-003-0339-0
Schmid R, Mader GL, Herring TA (2005) From relative to absolute antenna phase center corrections. In: Meindl M (ed) Proceedings of the IGS Workshop and Symposium 2004 (in press)
Schuh H, Böhm J (2003) Determination of tropospheric parameters within the new IVS Pilot Project. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Frankfurt/Leipzig, pp 257–264
Steigenberger P, Rothacher M, Dietrich R, Rülke A, Fritsche M (2004) Reprocessing of a global GPS network. Geophysical research abstracts, vol 6, 07649, European Geosciences Union
Titov O, Tesmer V, Böhm J (2001) OCCAM 5.0 users guide, AUSLIG technical report 7. AUSLIG, Canberra
Wübbena G, Schmitz M, Menge F, Böder V, Seeber G (2000) Automated absolute field calibration of GPS antennas in real-time. In: Proceedings of the ION GPS Meeting 2000, Salt Lake City
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmid, R., Rothacher, M., Thaller, D. et al. Absolute phase center corrections of satellite and receiver antennas. GPS Solut 9, 283–293 (2005). https://doi.org/10.1007/s10291-005-0134-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10291-005-0134-x