[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Measurement Challenges for Medical Image Display Devices

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Visual information is a critical component in the evaluation and communication of patient medical information. As display technologies have evolved, the medical community has sought to take advantage of advances in wider color gamuts, greater display portability, and more immersive imagery. These image quality enhancements have shown improvements in the quality of healthcare through greater efficiency, higher diagnostic accuracy, added functionality, enhanced training, and better health records. However, the display technology advances typically introduce greater complexity in the image workflow and display evaluation. This paper highlights some of the optical measurement challenges created by these new display technologies and offers possible pathways to address them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. International Color Consortium: ICC White Paper WP46: Improving color image quality in medical photography, 2017. http://color.org/whitepapers/ICC_White_Paper46-Medical_Photography_Guidelines.pdf

  2. J. Penczek, P. A. Boynton, and J. D. Splett: Color error in the digital camera image capture process, J. Digital Imaging, 27, 182-191, 2014

    Article  Google Scholar 

  3. IEC 61966–2–1 (1999): Multimedia systems and equipment- Colour measurement and management: Part 2–1: Colour management-Default RGB colour space- sRGB. Note that IEC is International Electrotechnical Commission

  4. ISO 15076–1 (2010): Image technology colour management—Architecture, profile format and data structure: Part 1: Based on ICC.1:2010. Note that ISO is International Organization for Standardization

  5. Digital Imaging and Communications in Medicine (DICOM) 4: Grayscale Standard Display Function. National Electrical Manufacturers Association (NEMA) Standard PS 3.14–1999

  6. P. Barten,: Physical model for the contrast sensitivity of the human eye, SPIE Proc. V1666, 1992

  7. P. Barten,: Spatiotemporal model for the contrast sensitivity of the human eye and its temporal aspects, SPIE Proc. V1913, 1993

  8. International Committee for Display Metrology (ICDM), Information Display Measurements Standard (IDMS), ver. 1.03, section A3, 2012. https://www.sid.org/Publications/ICDM.aspx

  9. IEC TR 62977–2–3 (2017): Electronic display devices: Part 2–3: Measurements of optical properties – Multi-colour test patterns. Note that IEC is International Electrotechnical Commission.

  10. IEC 62087–2 (2015): Audio, video, and related equipment – Determination of power consumption: Part 2: Signals and media. Note that IEC is International Electrotechnical Commission.

  11. M. E. Miller, M. J. Murdoch, J. E. Ludwichi, and A. D. Arnold: Determining power consumption for emissive displays, Digest of Soc. for Information Display, 37, 482-485, 2006

    Google Scholar 

  12. IEC 62977–2–1 (2021): Electronic displays: Part 2–1: Measurements of optical characteristics - Fundamental measurements. Note that IEC is International Electrotechnical Commission

  13. A. Badano, et al,; Consistency and standardization of color in medical imaging: a consensus report, J. Digital Imaging, 28, 41–52, 2015

  14. J. Penczek and P. A. Boynton: Color error in the medical digital image workflow, Digest of Soc. for Information Display, 45, 348-351, 2014

    Google Scholar 

  15. M. R. Pointer: The gamut of real surface colors, Color Research and Appl., 5, 145-155, 1980

    Article  Google Scholar 

  16. ITU-R BT.2020 (2015): Parameter values for ultra-high definition television systems for production and international programme exchange. Note that ITU is the International Telecommunication Union

  17. Y. Zong, S. W. Brown, B.C. Johnson, K. R. Lykke, and Y. Ohno: Simple spectral stray light correction method for array spectroradiometers, Applied Optics, 45, 1111-1119, 2006

    Article  PubMed  Google Scholar 

  18. E. F. Kelley, K. Lang, L. D. Silverstein, and M. H. Brill: A rational methodology for estimating the luminous flux based upon color primaries for digital projection displays, NISTIR 6657, 2009

  19. CIE 168 (2005): Criteria for the evaluation of extended-gamut colour encoding. Note that CIE is International Commission on Illumination

  20. J. Bergquist: Performance measurement of RGB displays with degenerate colors, Paper VHFp4-1L, Proc. IDW 2017, 1118-2220, 2017

    Google Scholar 

  21. J. Bergquist: Fast and accurate colour gamut volume measurements of RGB displays with degenerate colors, Paper VHFp7–3, Proc. IDW 2018, 2018

  22. E. F. Kelley, M. Lindfors, J. Penczek: Display Daylight Ambient Contrast Measurement Methods and Daylight Readability, J. Soc. for Information Display, 14, 1019-1030, 2006

    Article  Google Scholar 

  23. [25] J. Penczek, E. F. Kelley, and P. A. Boynton: General metrology framework for determining the ambient optical performance of flat panel displays, Digest of Soc. for Information Display, 46, 727-730, 2015

    Google Scholar 

  24. IEC 62977–2–2 (2020): Electronic displays: Part 2–2: Measurements of optical characteristics – Ambient performance. Note that IEC is International Electrotechnical Commission

  25. IEC 62679–3–1 (2014): Electronic paper displays- Part 3–1: Optical measuring methods. Note that IEC is International Electrotechnical Commission

  26. IEC 62341–6–4 (2017): Organic light emitting diode (OLED) displays- Part 6–4: Measuring methods of transparent properties. Note that IEC is International Electrotechnical Commission

  27. J. Penczek and D. Hertel: Developing E-paper standards for the mobile age, Digest of Soc. for Information Display, 45, 865-868, 2014

    Google Scholar 

  28. J. Penczek, E. F. Kelley, and P. A. Boynton: General framework for measuring the optical characteristics of displays under ambient illumination, J. Soc. for Information Display, 23, 529-542, 2015

    Article  CAS  Google Scholar 

  29. J. N. Silva, M. Southworth, C. Raptis, and J. Silva: Emerging application of virtual reality in cardiovascular medicine. JACC: Basic to Transl. Sci., 3, 420–430, 2018

  30. A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde: Virtual reality for preoperative planning in large ventricular septal defects, Eur. Heart journal, 2018

    Google Scholar 

  31. D. Katic, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R.Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel: A system for context-aware intraoperative augmented reality in dental implant surgery, Int. journal computer-assisted radiology surgery, 10, 101-108, 2015

    Article  Google Scholar 

  32. Y.-K Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung: A novel dental implant guided surgery based on integration of surgical template and augmented reality, Clin. implant dentistry related research, 17, 543-553, 2015

    Article  Google Scholar 

  33. N. Cui, P. Kharel, and V. Gruev: Augmented reality with mocrosoft hololens holograms for near infrared fluorescence based image guided surgery, Moleclar-Guided Surgery: Molecules, Devices, and Applications III (10049), 100490I.9, 2017

  34. M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li: A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery, Sci. Reports, 7, 42365, 2017

    CAS  Google Scholar 

  35. X. Chen and J. Hu: A review of haptic simulator for oral and maxillofacial surgery based on virtual reality, Expert. Review medical devices, 15, 435-444, 2018

    Article  CAS  PubMed  Google Scholar 

  36. D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga: Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts, J. Digital Imaging, 201, 1-8, 2018

    Google Scholar 

  37. M. M. North and S. M. North: Virtual reality therapy, Computer-assisted and web-based innovations in psychology, special education, and health, 141–156. Elsevier, 2016

  38. T. M. Peters, C. A. Linte, Z. Yaniv, and J. Williams: Mixed and augmented reality in medicine. CRC Press, 2018

  39. W.-C. Chang, L.-W. Ko, K.-H.Yu, Y.-C. Ho, C.-H. Chen, Y.-J. Jong, Y.-P. Huang: EEG analysis of mixed-reality music rehabilitation system for post-stroke lower limb therapy, J. Soc. for Information Display, 27, 372-380, 2019

    Article  Google Scholar 

  40. G. S. Ruthenbeck and K. J. Reynolds: Virtual reality for medical training: the state-of-the-art, J. Simulation, 9, 16-26, 2015

    Article  Google Scholar 

  41. F. G. Hamza-Lup, J. P. Rolland, and C. Hughes: A distributed augmented reality system for medical training and simulation, arXiv reprint arXiv: 1811.12815, 2018

  42. IEC TR 63145–1–1 (2018): Eyewear display- Part 1–1: Generic introduction. Note that IEC is International Electrotechnical Commission

  43. ISO 9241–303 Annex E (2008): Ergonomics of human-system interaction – Part 303: Requirements for electronic visual displays. Note that ISO is International Organization for Standardization

  44. ISO 9241–392 (2015): Ergonomics of human-system interaction – Part 392: Ergonomic recommendations for the reduction of visual fatigue from stereoscopic images. Note that ISO is International Organization for Standardization

  45. J. Penczek, M. Hasan, B. S. Denning, R. Calpito, R. L. Austin, and P. A. Boynton: Measuring interocular geometric distortion of near-eye displays, Digest of Soc. for Information Display, 50, 430-433, 2019

    Google Scholar 

  46. J. Penczek, P.A. Boynton, F.M. Meyer, E.L. Heft, R.M. Austin, T.A. Lianza, L.V. Leibfried, and L.W. Gacy: Absolute radiometric and photometric measurements of near-eye displays, J. Soc. for Information Display, 25, 215-221, 2017

    Article  Google Scholar 

  47. R. S. Draper, J. Penczek, R. Varshneya, and P. A. Boynton: Standardizing fundamental criteria for near eye display optical measurements: Determining eye point position, Digest of Soc. for Information Display, 49, 961-964, 2018

    Google Scholar 

  48. IEC 63145–20–10 (2019): Eyewear display- Part 20–10: Fundamental measurement methods – Optical properties. Note that IEC is International Electrotechnical Commission

  49. S. K. Rushton and P. M. Riddell: Developing visual systems and exposure to virtual reality and stereo displays: some concerns and speculations about the demands on accommodation and vergence, Appl. Ergonomics, 30, 69-78, 1999

    Article  CAS  Google Scholar 

  50. J. Penczek and P. A. Boynton: Optical instrument requirements for measuring Near-eye displays, IDW ’17 The 24th International Display Workshops, Sendai, Japan, 2017

    Google Scholar 

  51. T. Jarvenpaa and V. Aaltonen: Compact near-to-eye display with integrated gaze tracker, Proc. SPIE 7001, Photonics in Multimedia II, Strasbourg, France, 2008

  52. R. J. M. Jones: Direct retinal imaging and virtual displays, RTO-MP-077, NATO Research and Technology Organsation meeting proceedings 77, Human Factors in the 21st Century, Neuilly-sur-Seine, France, 2002

    Google Scholar 

  53. E. Samei, et al.: Assessment of display performance for medical imaging systems: Executive summary of AAPM TG18 Report. Medical Physics, 32, 1205-1225 2005

    Article  PubMed  Google Scholar 

  54. AAPM Report No. 270. Display Quality Assurance (https://www.aapm.org/pubs/reports/RPT_270.pdf)

  55. ACR/NEMA. Digital Imaging and Communications in Medicine (DICOM), DICOM PS3.14 2019e, Grayscale Standard Display Function, 2019

  56. P. C. Brennan et al.: Ambient lighting: effect of illumination on soft-copy viewing of radiographs of the wrist, American Journal of Roentgenology 188.2: W177-W180, 2007

    Article  PubMed  Google Scholar 

  57. A. Yamazaki, P. Liu, W.C. Cheng, and A. Badano: Image quality characteristics of handheld display devices for medical imaging. PloS one, 8(11), e79243, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  58. R. J. Toomey, J. T. Ryan, M. F. McEntee, M. G. Evanoff, D. P. Chakraborty, J. P. McNulty, D. J. Manning, E. M. Thomas, and P. C. Brennan: Diagnostic efficacy of handheld devices for emergency radiologic consultation. American Journal of Roentgenology, 194(2), 469-474, 2010

    Article  PubMed  Google Scholar 

  59. S. Condino, M. Carbone, R. Piazza, M. Ferrari, and V. Ferrari: Perceptual Limits of Optical See-Through Visors for Augmented Reality Guidance of Manual Tasks. IEEE Transactions on Biomedical Engineering, OI https://doi.org/10.1109/TBME.2019.2914517, 2019

  60. C. M. Zwart, M. He, T. Wu, B. M. Demaerschalk, J. R. Mitchell, and A. K. Hara.: Selection and pilot implementation of a mobile image viewer: a case study. JMIR Mhealth Uhealth, 3(2):e45, 2015

  61. P. M. Schlechtweg, F. J. Kammerer, H. Seuss, M. Uder, and M. Hammon.: Mobile image interpretation: Diagnostic performance of CT exams displayed ona tablet computer in detecting abdominopelvic hemorrhage. J. Digit Imaging, 29(2):183–188, 2016

  62. A. Badano, et al.: Considerations for the Use of Handheld Image Viewers: The Report of AAPM Task Group 260, Amer. Assoc. of Phys. In Med, 2018

    Book  Google Scholar 

  63. R. Rahman, M. E. Wood, L. Qian, C. L. Price, A. A. Johnson, and G. M. Osgood: Head-Mounted Display Use in Surgery: A Systematic Review. Surgical innovation, 1553350619871787, 2019

  64. W. C. Cheng, F. Saleheen, and A. Badano: Assessing color performance of whole‐slide imaging scanners for digital pathology. Color Research & Application, 44(3), 322-334, 2019

    Article  Google Scholar 

  65. P. M. Schlechtweg, M. Hammon, D. Giese, C. Heberlein, M. Uder, and S. A. Schwab.: iPad-based patient briefing for radiological examinations - a clinical trial. J Digit Imaging, 27(4):479–485, 2014

  66. K. Masaoka: Single display gamut size metric, J. Soc. for Information Display, 24, 419-423, 2016

    Article  Google Scholar 

  67. E. Smith, R. L. Heckaman, K. Lang, J. Penczek, and J. Bergquist: Measuring the color capability of modern display systems, J. Soc. for Information Display, 28, 548-556, 2020

    Article  Google Scholar 

  68. K. Masaoka, F. Jiang, M. D. Fairchild: 2D representation of display color gamut, Digest of Soc. for Information Display, 49, 1048-1051, 2018

    Google Scholar 

  69. R. Varshneya, R. S. Draper, J. Penczek, B. M. Pixton, N. Terence, and P. A. Boynton: Standardizing fundamental criteria for near eye display optical measurements: Determining the eye-box, Digest of Soc. for Information Display, 51, 742-745, 2020

    Google Scholar 

  70. IEC 63145–20–20 (2019): Eyewear display- Part 20–20: Fundamental measurement methods – Image quality. Note that IEC is International Electrotechnical Commission

  71. J. Penczek, R. L. Austin, S. Obheroi, M. Hasan, G. J. Cook, and P. A. Boynton: Measuring direct retinal projection displays, Digest of Soc. for Information Display, 51, 807-810, 2020

    CAS  Google Scholar 

  72. R. Beams, A. S. Kim, and A. Badano: Transverse chromatic aberration in virtual reality head-mounted displays, Optics Express, 27, 24877-24884, 2019

    Article  PubMed  Google Scholar 

  73. L. Zhang and M. J. Murdoch: Color matching criteria in augmented reality, Color and Imaging Conference, Vol. 2018. No. 1. Society for Imaging Science and Technology, 2018

  74. A. Wilson and H. Hua: Design and prototype of an augmented reality display with per-pixel mutual occlusion capability, Optics Express, 24, 30539-30549, 2017

    Article  Google Scholar 

  75. A. S. Kim, W.-C. Cheng, R. Beams, and A. Badano: Color rendering in medical extended-reality applications, J. Digital Imaging, 2020, https://doi.org/https://doi.org/10.1007/s10278-020-00392-4

    Article  Google Scholar 

  76. R. Beams, B. Collins, A. S. Kim, and A. Badano: Angular dependence of the spatial resolution in virtual reality displays, IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 2020, https://doi.org/10.1109/VR46266.2020.00108, 2018

Download references

Acknowledgements

The authors would like to thank Edward F. Kelley and Johan Bergquist for his valuable discussions and the use of their data. Funding for this work came from the NIST Health IT initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Penczek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penczek, J., Boynton, P.A., Beams, R. et al. Measurement Challenges for Medical Image Display Devices. J Digit Imaging 34, 458–472 (2021). https://doi.org/10.1007/s10278-021-00438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-021-00438-1

Keywords