[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Improved Complexity Bounds for Counting Points on Hyperelliptic Curves

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We present a probabilistic Las Vegas algorithm for computing the local zeta function of a hyperelliptic curve of genus g defined over \({\mathbb {F}}_q\). It is based on the approaches by Schoof and Pila combined with a modelling of the \(\ell \)-torsion by structured polynomial systems. Our main result improves on previously known complexity bounds by showing that there exists a constant \(c>0\) such that, for any fixed g, this algorithm has expected time and space complexity \(O((\log q)^{c g})\) as q grows and the characteristic is large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adleman, L.M., Huang, M.D.: Counting points on curves and Abelian varieties over finite fields. Journal of Symbolic Computation 32(3), 171–189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkin, A.O.L., Morain, F.: Finding suitable curves for the elliptic curve method of factorization. Mathematics of Computation 60(201), 399–405 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cafure, A., Matera, G.: Fast computation of a rational point of a variety over a finite field. Mathematics of Computation 75(256), 2049–2085 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Mathematics of Computation 48(177), 95–101 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cantor, D.G.: On the analogue of the division polynomials for hyperelliptic curves. Journal fur die reine und angewandte Mathematik 447, 91–146 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F. (2005) Handbook of elliptic and hyperelliptic curve cryptography. CRC press, Boca Raton

    Book  MATH  Google Scholar 

  7. Galbraith, S.D. (2012) Mathematics of public key cryptography. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Gaudry, P., Kohel, D.R., Smith, B.A.: Counting points on genus 2 curves with real multiplication. In: ASIACRYPT 2011, LNCS, vol. 7073, pp. 504–519. Springer (2011)

  9. Gaudry, P., Schost, É.: Genus 2 point counting over prime fields. Journal of Symbolic Computation 47(4), 368–400 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. Journal of complexity 17(1), 154–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harvey, D.: Computing zeta functions of arithmetic schemes. Proceedings of the London Mathematical Society 111, 1379–1401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heintz, J.: Definability and fast quantifier elimination in algebraically closed fields. Theoretical Computer Science 24(3), 239–277 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, M.D., Ierardi, D.: Counting points on curves over finite fields. Journal of Symbolic Computation 25(1), 1–21 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kedlaya, K.S.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. Journal of the Ramanujan mathematical society 16(4), 323–338 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Kleiman, S.L.: Bertini and his two fundamental theorems. arXiv:alg-geom/9704018v1 (1997)

  16. Lauder, A.G.B.: Deformation theory and the computation of zeta functions. Proceedings of the London Mathematical Society 88(3), 565–602 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lauder, A.G.B., Wan, D.: Counting points on varieties over finite fields of small characteristic. In: J.P. Buhler, P. Stevenhagen (eds.) Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, Mathematical Sciences Research Institute Publications, pp. 579–612. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  18. Lorenzini, D.: An invitation to arithmetic geometry, Graduate Studies in Mathematics, vol. 9. American Mathematical Soc (1996)

  19. Mumford, D.: Abelian varieties. Oxford University Press, Oxford (1974)

    MATH  Google Scholar 

  20. Pila, J.: Frobenius maps of abelian varieties and finding roots of unity in finite fields. Mathematics of Computation 55(192), 745–763 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pila, J.: Counting points on curves over families in polynomial time. arXiv:math/0504570v1 (2005)

  22. Safey El Din, M., Schost, É.: A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. Journal of the ACM 63(6), 1– 48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Satoh, T.: The canonical lift of an ordinary elliptic curve over a finite field and its point counting. Journal of the Ramanujan mathematical society 15(4), 247–270 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of Computation 44(170), 483–494 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Sommese, A.J., Wampler II, C.W. (2005) The numerical solution of systems of polynomials arising in engineering and science. World Scientific, Singapore

    Book  MATH  Google Scholar 

  26. Tenenbaum, G. (1995) Introduction to analytic and probabilistic number theory. Cambridge university press, Cambridge

    MATH  Google Scholar 

  27. Tuitman, J.: Counting points on curves using a map to \({P}^1\). Mathematics of Computation 85, 961–981 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tuitman, J.: Finite Fields and Their Applications . Finite Fields and Their Applications 45, 301,322 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Von Zur Gathen, J., Gerhard, J. (2013) Modern computer algebra. Cambridge university press, Cambridge

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Éric Schost and Guillermo Matera for fruitful discussions and for pointing out important references. We also wish to thank anonymous referees for their comments which helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierrick Gaudry.

Additional information

Communicated by John Cremona.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abelard, S., Gaudry, P. & Spaenlehauer, PJ. Improved Complexity Bounds for Counting Points on Hyperelliptic Curves. Found Comput Math 19, 591–621 (2019). https://doi.org/10.1007/s10208-018-9392-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-018-9392-1

Keywords

Mathematics Subject Classification

Navigation