[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Insight into cooperation processes for traffic scenarios: modelling with naturalistic decision making

  • Original Article
  • Published:
Cognition, Technology & Work Aims and scope Submit manuscript

Abstract

With the introduction of automatic vehicle guidance (AV), mixed traffic scenarios between automatically and manually guided vehicles are to be expected, at least during a transitions phase. To ensure the safety of motor vehicle transportation, it will be essential to develop a cooperative relationship between human drivers and AV. Research in this area is currently being done to gain insight into the manner of human drivers’ decisions to transfer the same behaviours to automatic vehicle guidance. A lot of research is being done to prepare for the introduction of AV, but there is still a lack of information on how individual road users make decisions in cooperative decisions. Currently, there is no study that has tried to understand the decision-making process with the help of an online-survey. For that reason, a questionnaire study on cooperative traffic situations (N = 281) was carried out, which was analysed with the Natural Decision Making approach. By means of the NDM approach and the use of the recognition module, links between planned action and the expected action between road users were identified. Furthermore, it was possible to categorize individual communication signals into offensive or defensive signals and thus make predictions about the intention of the driver. These findings can be used to derive design recommendations for automatic vehicle guidance in cooperative situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bauer T, Risser R, Soche P, Teske W, Vaughan C (1980) Kommunikation im Straßenverkehr: Literaturstudie aus juridischem, kommunikationstheoretischem und psychologischen Blickwinkel. 1. Zwischenbericht. Kuratorium Für Verkehrssicherheit, Wien Google Scholar

  • Ba Y, Zhang W, Reimer B, Yang Y, Salvendy G (2015) The effect of communicational signals on drivers' subjective appraisal and visual attention during interactive driving scenarios. Behaviour & Information Technology 34(11):1107–1118

    Article  Google Scholar 

  • Benmimoun A, Neunzig D, Maag C (2004) Effizienzsteigerung durch professionnelles/partnerschaftliches Verhalten im Strassenverkehr. FAT-Schriftenreihe. (181)

  • Björklund GM, Åberg L (2005) Driver behaviour in intersections: formal and informal traffic rules. Transp Res Part F Traffic Psychol Behav 8(3):239–253

    Article  Google Scholar 

  • Bortz J, Döring N (2013) Forschungsmethoden und evaluation. Springer, Berlin

    Google Scholar 

  • Chauvin C, Clostermann JP, Hoc J-M (2008) Situation awareness and the decision-making process in a dynamic situation: avoiding collisions at sea. J Cognit Eng Decision Mak 2(1):1–23

    Article  Google Scholar 

  • de Ceunynck T, de Polders E, Daniels S, Hermans E, Brijs T, Wets G (2013) Road SafetyDifferences Between Priority-Controlled Intersections and Right-Hand Priority Intersections: BehavioralAnalysis of Vehicle-Vehicle Interactions. Transportation Research Record: Journal of the Transportation Research Board. 2365:39–48

    Article  Google Scholar 

  • Donderi DC (2006) Visual complexity: a review. Psychol Bull 132(1):73

    Article  Google Scholar 

  • Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4(1):95–104

    Article  MathSciNet  Google Scholar 

  • Elvik R (2014) A review of game-theoretic models of road user behaviour. Accid Anal Prev 62:388–396

    Article  Google Scholar 

  • European Commission (2016) Traffic safety basic facts on junctions. https://www.nrso.ntua.gr/european-commission-infographics-on-traffic-safety-facts-figures-2016

  • Färber B (2015) Kommunikationsprobleme zwischen autonomen Fahrzeugen und menschlichen Fahrern. In: Maurer M, Gerdes JC, Lenz B, Winner H (eds) Autonomes Fahren: Technische, rechtliche und gesellschaftliche Aspekte. Springer, Berlin, pp 127–146. https://doi.org/10.1007/978-3-662-45854-9_7

    Chapter  Google Scholar 

  • Field A, Miles J (2012) Discovering statistics using R. Sage, Thousand Oaks

    Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:(4)857–871.

    Article  Google Scholar 

  • Harvey C, Zheng P, Stanton NA (2013) Naturalistic decision making on the ship’s bridge. In: International conference on naturalistic decision making, pp. 211-214, ISBN-13: 978-3868940602

  • Hatzinger R, Hornik K, Nagel H (2011) R: Einführung durch angewandte Statistik: Pearson Deutschland GmbH

  • Henking A, Bluhm C, Fahrmeir L (2006) Kreditrisikomessung: Statistische Grundlagen, Methoden und Modellierung. Springer, Berlin

    MATH  Google Scholar 

  • Herzberger ND, Voß GMI, Becker FK, Grazioli F, Altendorf E, Canpolat Y, Schwalm M (2018) Derivation of a model of safety critical transitions between driver and vehicle in automated driving. In: Stanton N (ed) Advances in intelligent systems and computing. advances in human aspects of transportation: proceedings of the AHFE 2018, vol 786. [S.l.]: Springer International Publishing, pp 421–433. https://doi.org/10.1007/978-3-319-93885-1_38

    Google Scholar 

  • Hoc J-M (2001) Towards a cognitive approach to human–machine cooperation in dynamic situations. Int J Hum Comput Stud 54(4):509–540. https://doi.org/10.1006/ijhc.2000.0454

    Article  Google Scholar 

  • Imbsweiler J, Ruesch M, Palyafári R, Deml B, Puente León F (2016) Entwicklung einer Beobachtungsmethode von Verhaltensströmen in kooperativen Situationen im innerstädtischen Verkehr. 32. VDI/VW-Gemeinschaftstagung Fahrerassistenzsysteme Und Automatisiertes Fahren. Wolfsburg, 8(09.11), 2016

  • Imbsweiler J, Linstedt K, Palyafári R, Weinreuter H, León FP, Deml B (2017) Quasi-experimentelle Untersuchung des Blickverhaltens und der Fahrparameter von Autofahrern in EngstellenQuasi-experimental investigation of the gaze behavior and driving parameters of road users in narrow passages. Zeitschrift Für Arbeitswissenschaft 71(4):242–251

    Article  Google Scholar 

  • Imbsweiler J, Ruesch M, Weinreuter H, Puente León F, Deml B (2018) Cooperation behaviour of road users in t-intersections during deadlock situations. Transp Res Part F Traffic Psychol Behav 58:665–677

    Article  Google Scholar 

  • Jamieson S (2004) Likert scales: how to (ab)use them. Med Educ 38(12):1217–1218. https://doi.org/10.1111/j.1365-2929.2004.02012.x

    Article  Google Scholar 

  • Kauffmann N, Naujoks F, Winkler F, Kunde W (2018) Learning the “Language” of Road Users - How Shall a Self-driving Car Convey Its Intention to Cooperate to Other Human Drivers? In: Nunes IL (ed) Advances in Human Factors and Systems Interaction. Springer International Publishing, Cham, pp 53–63

    Chapter  Google Scholar 

  • Kitazaki S, Myhre NJ (2015) Effects of non-verbal communication cues on decisions and confidence of drivers at an uncontrolled intersection In 8th International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design

  • Klein G (2008) Naturalistic decision making. Hum Factors 50(3):456–460. https://doi.org/10.1518/001872008X288385

    Article  Google Scholar 

  • Klein G (2009) The recognition-primed decision (RPD) model: looking back, looking forward. In: Zsambok CE, Klein GA (eds) Expertise research and applications. Naturalistic decision making. Routledge, New York

    Google Scholar 

  • Knapp TR (1990) Treating ordinal scales as interval scales: an attempt to resolve the controversy. Nurs Res 39(2):121–123

    Article  Google Scholar 

  • Lütteken N, Zimmermann M, Bengler KJ (2016) Using gamification to motivate human cooperation in a lane-change scenario. In: 19th international conference on intelligent transportation systems (ITSC), pp 899–906. https://doi.org/10.1109/ITSC.2016.7795662

  • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2017) Cluster: cluster analysis basics and extensions. R package version 2.0. 1. 2015

  • McFadden D (1973) Conditional logit analysis of qualitative choice behavior. Front Econometrics 105–142

  • Merten K (1977) Kommunikationsprozesse im Straßenverkehr. Bundesminister für Verkehr. In: Bundesminister für Verkehr (ed.), Symposium Unfallforschung und Verkehrssicherheit (= Schriftenreihe Unfall-und Sicherheitsforschung Straßenverkehr, Heft 14), pp 115–126

  • Oviedo-Trespalacios O, Haque MM, King M, Washington S (2017) Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers. Accid Anal Prev 101:67–77

    Article  Google Scholar 

  • Pion O, Henze R, Küçükay F (2012) Fingerprint des Fahrers zur Adaption von Assistenzsystemen. GI-Jahrestagung 2012:833–842

    Google Scholar 

  • Renge K (2000) Effect of driving experience on drivers’ decoding process of roadway interpersonal communication. Ergonomics 43(1):27–39

    Article  Google Scholar 

  • Risser R (1985) Behavior in traffic conflict situations. Accid Anal Prev 17(2):179–197. https://doi.org/10.1016/0001-4575(85)90020-X

    Article  Google Scholar 

  • Road traffic Regulations (2016), StVO, §11 special traffic situations

  • Schroder HM, Driver MJ, Streufert S (1975) Menschliche Informationsverarbeitung: Die Strukturen der Informationsverarbeitung bei Einzelpersonen und Gruppen in komplexen sozialen. Situationen, Beltz

    Google Scholar 

  • Tuch AN, Bargas-Avila JA, Opwis K, Wilhelm FH (2009) Visual complexity of websites: effects on users’ experience, physiology, performance, and memory. Int J Hum Comput Stud 67(9):703–715

    Article  Google Scholar 

  • Vanderhaegen F, Carsten O (2017) Can dissonance engineering improve risk analysis of human–machine systems?. Springer, Berlin

    Google Scholar 

  • Vanderhaegen F, Chalmé S, Anceaux F, Millot P (2006) Principles of cooperation and competition: Application to car driver behavior analysis. Cogn Technol Work 8(3):183–192. https://doi.org/10.1007/s10111-006-0037-9

    Article  Google Scholar 

  • Vanderhaegen F, Zieba S, Enjalbert S, Polet P (2011) A Benefit/Cost/Deficit (BCD) model for learning from human errors. Reliab Eng Syst Saf 96(7):757–766

    Article  Google Scholar 

  • Wu H, Leung S-O (2017) Can Likert Scales be Treated as Interval Scales?—A Simulation Study. J Soc Serv Res 43(4):527–532. https://doi.org/10.1080/01488376.2017.1329775

    Article  Google Scholar 

  • Zimmermann M, Schopf D, Lütteken N, Liu Z, Storost K, Baumann M, Bengler KJ (2018) Carrot and stick: a game-theoretic approach to motivate cooperative driving through social interaction. Transp Res Part C Emerg Technol 88:159–175. https://doi.org/10.1016/j.trc.2018.01.017

    Article  Google Scholar 

  • Zsambok CE (2009) Naturalistic decision making: where are we now? In: Zsambok CE, Klein GA (eds) Expertise research and applications. Naturalistic decision making. Routledge, New York

    Google Scholar 

Download references

Acknowledgements

This project was funded within the Priority Programme (SPP 1835) “Cooperatively Interacting Automobiles” of the German Science Foundation DFG. The authors thank the project partners for the fruitful cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Imbsweiler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbsweiler, J., Stoll, T., Ruesch, M. et al. Insight into cooperation processes for traffic scenarios: modelling with naturalistic decision making. Cogn Tech Work 20, 621–635 (2018). https://doi.org/10.1007/s10111-018-0518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10111-018-0518-7

Keywords

Navigation