Abstract
We introduce EigenRec, a versatile and efficient latent factor framework for top-N recommendations that includes the well-known PureSVD algorithm as a special case. EigenRec builds a low-dimensional model of an inter-item proximity matrix that combines a similarity component, with a scaling operator, designed to control the influence of the prior item popularity on the final model. Seeing PureSVD within our framework provides intuition about its inner workings, exposes its inherent limitations, and also, paves the path toward painlessly improving its recommendation performance. A comprehensive set of experiments on the MovieLens and the Yahoo datasets based on widely applied performance metrics, indicate that EigenRec outperforms several state-of-the-art algorithms, in terms of Standard and Long-Tail recommendation accuracy, exhibiting low susceptibility to sparsity, even in its most extreme manifestations—the Cold-Start problems. At the same time, EigenRec has an attractive computational profile and it can apply readily in large-scale recommendation settings.
Similar content being viewed by others
Notes
Note that even though the actual values of the reconstructed matrix do not have a meaning in terms of ratings, they induce an ordering of the items which is sufficient for recommending top-N lists.
A preliminary version of this work has been presented in [28].
High-level and MPI implementations of EigenRec can be found here: https://github.com/nikolakopoulos/EigenRec.
Remember that these “scores” are by definition the elements that replace the previously zero-valued entries of the original ratings matrix \({\mathbf {R}}\), after its reconstruction using only the f largest singular dimensions.
For which, if we assume scaling parameter d, matrix W equals \({\mathbf {R}}\,{\mathrm{diag}}\{\Vert {\mathbf {r}}_{{\mathbf {1}}}\Vert ,\Vert {\mathbf {r}}_{{\mathbf {2}}}\Vert ,\dots ,\Vert {\mathbf {r}}_{{\mathbf {m}}}\Vert \}^{d-1}.\)
Note that to alleviate this, one can use sophisticated parallel schemes that try to overlap communication with computations; however, their analysis goes deep into high-performance computing and lies outside the scope of this paper.
References
Anderson C (2008) The long tail: Why the future of business is selling less of more. Hyperion, New York
Aurentz JL, Kalantzis V, Saad Y (2017) Cucheb: a GPU implementation of the filtered Lanczos procedure. Comput Phys Commun 220:332–340
Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H (2000) Templates for the solution of algebraic eigenvalue problems: a practical guide, vol 11. SIAM, Philadelphia
Balakrishnan S, Chopra S (2012) Collaborative ranking. In: Proceedings of the fifth ACM international conference on Web search and data mining, WSDM ’12. ACM, New York, pp 143–152. https://doi.org/10.1145/2124295.2124314
Blackford LS, Petitet A, Pozo R, Remington K, Whaley RC, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G et al (2002) An updated set of basic linear algebra subprograms (blas). ACM Trans Math Softw 28(2):135–151
Blom K, Ruhe A (2004) A krylov subspace method for information retrieval. SIAM J Matrix Anal Appl 26(2):566–582
Bobadilla J, Ortega F, Hernando A, GutiéRrez A (2013) Recommender systems survey. Knowl. Based Syst 46:109–132. https://doi.org/10.1016/j.knosys.2013.03.012
Chebotarev P, Shamis E (1997) The matrix-forest theorem and measuring relations in small social groups. Autom Remote Control 58(9):1505–1514
Chen J, Saad Y (2009) Lanczos vectors versus singular vectors for effective dimension reduction. IEEE Trans Knowl Data Eng 21(8):1091–1103
Cremonesi P, Koren Y, Turrin R (2010) Performance of recommender algorithms on top-n recommendation tasks. In: Proceedings of the fourth ACM conference on Recommender systems, RecSys ’10. ACM, pp 39–46. https://doi.org/10.1145/1864708.1864721
Desrosiers C, Karypis G (2011) A comprehensive survey of neighborhood-based recommendation methods. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, US, pp 107–144. https://doi.org/10.1007/978-0-387-85820-3_4
Elbadrawy A, Karypis G (2015) User-specific feature-based similarity models for top-n recommendation of new items. ACM Trans Intell Syst Technol 6(3):33:1–33:20. https://doi.org/10.1145/2700495
Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M (2012) An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw 31:53–72
Fouss F, Pirotte A, Renders J, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369
Gallopoulos E, Philippe B, Sameh AH (2015) Parallelism in matrix computations, 1st edn. Springer, Berlin
Gantner Z, Drumond L, Freudenthaler C, Rendle S, Schmidt-Thieme L (2010) Learning attribute-to-feature mappings for cold-start recommendations. In: 2010 IEEE 10th international conference on data mining (ICDM), pp 176–185. https://doi.org/10.1109/ICDM.2010.129
Goldberg K, Roeder T, Gupta D, Perkins C (2001) Eigentaste: a constant time collaborative filtering algorithm. Inf Retr 4(2):133–151. https://doi.org/10.1023/A:1011419012209
Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACM Trans Interact Intell Syst 5(4):19:1–19:19. https://doi.org/10.1145/2827872
Huang Z, Chen H, Zeng D (2004) Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans Inf Syst 22(1):116–142. https://doi.org/10.1145/963770.963775
Joachims T, Swaminathan A, Schnabel T (2017) Unbiased learning-to-rank with biased feedback. In: Proceedings of the tenth ACM international conference on web search and data mining, WSDM ’17. ACM, New York, pp 781–789. https://doi.org/10.1145/3018661.3018699
Kabbur S, Ning X, Karypis G (2013) Fism: factored item similarity models for top-n recommender systems. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’13. ACM, New York, pp 659–667. https://doi.org/10.1145/2487575.2487589
Kalantzis V, Li R, Saad Y (2016) Spectral schur complement techniques for symmetric eigenvalue problems. Electron Trans Numer Anal 45:305–329
Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD’08. ACM, New York, pp 426–434. https://doi.org/10.1145/1401890.1401944
Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Computer 42(8):30–37
Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Government Press Office, Washington, D.C
Nikolakopoulos A, Garofalakis J (2014) NCDREC: a decomposability inspired framework for top-n recommendation. In: 2014 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and intelligent agent technologies (IAT), vol 1, pp 183–190. https://doi.org/10.1109/WI-IAT.2014.32
Nikolakopoulos AN, Kalantzi M, Garofalakis JD (2014) On the use of lanczos vectors for efficient latent factor-based top-n recommendation. In: Proceedings of the 4th international conference on web intelligence, mining and semantics (WIMS14), WIMS ’14. ACM, New York, pp 28:1–28:6. https://doi.org/10.1145/2611040.2611078
Nikolakopoulos AN, Kalantzis V, Gallopoulos E, Garofalakis JD (2017) Factored proximity models for top-n recommendations. In: 2017 IEEE international conference on big knowledge (ICBK), pp 80–87. https://doi.org/10.1109/ICBK.2017.14
Nikolakopoulos AN, Korba A, Garofalakis JD (2016) Random surfing on multipartite graphs. In: 2016 IEEE international conference on big data (big data), pp 736–745. https://doi.org/10.1109/BigData.2016.7840666
Nikolakopoulos AN, Kouneli MA, Garofalakis JD (2015) Hierarchical itemspace rank: exploiting hierarchy to alleviate sparsity in ranking-based recommendation. Neurocomputing 163:126–136. https://doi.org/10.1016/j.neucom.2014.09.082
Sarwar B, Karypis G, Konstan J, Riedl J (2000) Application of dimensionality reduction in recommender system-a case study. Tech. rep., DTIC Document
Schnabel T, Swaminathan A, Singh A, Chandak N, Joachims T (2016) Recommendations as treatments: debiasing learning and evaluation. In: Proceedings of the 33rd international conference on international conference on machine learning, ICML’16, vol 48, pp 1670–1679. JMLR.org. http://dl.acm.org/citation.cfm?id=3045390.3045567
Shani G, Gunawardana A (2011) Evaluating recommendation systems. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender systems handbook. Springer, Boston, pp 257–297. https://doi.org/10.1007/978-0-387-85820-3_8
Sharma M, Zhou J, Hu J, Karypis G (2015) Feature-based factorized bilinear similarity model for cold-start top-n item recommendation. In: Proceedings of the 2015 SIAM international conference on data mining, SDM’15, pp 190–198. https://doi.org/10.1137/1.9781611974010.22
Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J (1998) MPI-the complete reference, vol 1: the MPI core, 2nd. (revised) edn. MIT Press, Cambridge
Takács G, Pilászy I, Németh B, Tikk D (2009) Scalable collaborative filtering approaches for large recommender systems. J Mach Learn Res 10:623–656 http://dl.acm.org/citation.cfm?id=1577069.1577091
Wu K, Simon H (2000) Thick-restart lanczos method for large symmetric eigenvalue problems. SIAM J Matrix Anal Appl 22(2):602–616
Wu L, Romero E, Stathopoulos A (2016) Primme_svds: A high-performance preconditioned svd solver for accurate large-scale computations. arXiv preprint arXiv:1607.01404
Wu L, Stathopoulos A (2015) A preconditioned hybrid svd method for accurately computing singular triplets of large matrices. SIAM J Sci Comput 37(5):S365–S388
Yahoo Webscope Program: Yahoo!R2Music Dataset. https://webscope.sandbox.yahoo.com/
Yin H, Cui B, Li J, Yao J, Chen C (2012) Challenging the long tail recommendation. Proc VLDB Endow 5(9):896–907
Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B (2003) Learning with local and global consistency. In: Thrun S, Saul LK, Schölkopf B (eds) Advances in neural information processing systems 16 [Neural information processing systems, NIPS 2003, 8–13 Dec 2003, Vancouver and Whistler, British Columbia, Canada]. MIT Press, pp 321–328. http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency
Acknowledgements
Vassilis Kalantzis was partially supported by a Gerondelis Foundation Fellowship. The authors acknowledge the Minnesota Supercomputing Institute (http://www.msi.umn.edu) at the University of Minnesota for providing resources that contributed to the research results reported within this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nikolakopoulos, A.N., Kalantzis, V., Gallopoulos, E. et al. EigenRec: generalizing PureSVD for effective and efficient top-N recommendations. Knowl Inf Syst 58, 59–81 (2019). https://doi.org/10.1007/s10115-018-1197-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-018-1197-7