[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Evaluation of two heuristic approaches to solve the ontology meta-matching problem

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Nowadays many techniques and tools are available for addressing the ontology matching problem, however, the complex nature of this problem causes existing solutions to be unsatisfactory. This work aims to shed some light on a more flexible way of matching ontologies. Ontology meta-matching, which is a set of techniques to configure optimum ontology matching functions. In this sense, we propose two approaches to automatically solve the ontology meta-matching problem. The first one is called maximum similarity measure, which is based on a greedy strategy to compute efficiently the parameters which configure a composite matching algorithm. The second approach is called genetics for ontology alignments and is based on a genetic algorithm which scales better for a large number of atomic matching algorithms in the composite algorithm and is able to optimize the results of the matching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumueller D, Do HH, Massmann S, Rahm E (2005) Schema and ontology matching with COMA++. In: SIGMOD conference 2005, pp 906–908

  2. Baeza-Yates R, Ribeiro-Neto BA (1999) Modern information retrieval. ACM Press, New York ISBN 0-201-39829-X

    Google Scholar 

  3. Berners-Lee T, Hendler J, Lassila O (2001) The semantic Web. Scientific American, Harlan

    Google Scholar 

  4. Buckland MK, Gey FC (1994) The relationship between recall and precision. JASIS 45(1): 12–19

    Article  Google Scholar 

  5. Cabral L, Domingue J, Motta E, Payne TR, Hakimpour F (2004) Approaches to semantic Web services: an overview and comparisons. In: ESWS 2004, pp 225–239

  6. Chen H, Perich F, Finin TW, Joshi A (2004) SOUPA: standard ontology for ubiquitous and pervasive applications. MobiQuitous, pp 258–267

  7. Chortaras A, Stamou GB, Stafylopatis A (2005) Learning ontology alignments using recursive neural networks. In: ICANN (2) 2005, pp 811–816

  8. Cilibrasi R, Vitanyi PMB (2007) The Google similarity distance. IEEE Trans Knowl Data Eng 19(3): 370–383

    Article  Google Scholar 

  9. Cohen GD, Litsyn S, ZémorGOn greedy algorithms in coding theory. IEEE Trans Inf heory 42(6):2053–2057

  10. Dietz JLG (2005) Enterprise ontology. In: ICEIS 2005, vol 1, p 5

  11. Do HH, Rahm E (2002) COMA—a system for flexible combination of schema matching approaches. In: VLDB 2002, pp 610–621

  12. Doerr M (2001) Semantic problems of Thesaurus mapping. J. Dig. Inf. 1(8)

  13. Domshlak C, Gal A, Roitman H (2007) Rank aggregation for automatic schema matching. IEEE Trans Knowl Data Eng 19(4): 538–553

    Article  Google Scholar 

  14. Drumm C, Schmitt M, Do HH, Rahm E (2007) Quickmig: automatic schema matching for data migration projects. In CIKM 2007, pp 107–116

  15. Ehrig M, Staab S, Sure Y (2005) Bootstrapping ontology alignment methods with APFEL. In: International semantic Web conference 2005, pp 186–200

  16. Ehrig M, Sure Y (2005) FOAM—framework for ontology alignment and mapping—results of the ontology alignment evaluation initiative. Integr. Ontol.

  17. Ehrig M (2007) Ontology alignment: bridging the semantic gap (contents). Springer, Berlin. ISBN 978-0-387-36501-5

  18. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin

    MATH  Google Scholar 

  19. Falconer S, Noy N (2007) Ontology mapping—a user survey. In: The second international workshop on ontology matching. ISWC/ASWC, pp 49–60

  20. Forrest S (1997) Genetic algorithms. The computer science and engineering handbook, pp 557–571

  21. Gal A, Anaby-Tavor A, Trombetta A, Montesi D (2005) A framework for modeling and evaluating automatic semantic reconciliation. VLDB J 14(1): 50–67

    Article  Google Scholar 

  22. Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: an algorithm and an implementation of semantic matching. In: ESWS 2004, pp 61–75

  23. He B, Chang KCC (2005) Making holistic schema matching robust: an ensemble approach. In: KDD 2005, pp 429–438

  24. Hu W, Cheng G, Zheng D, Zhong X, Qu Y (2006) The results of Falcon-AO in the OAEI 2006 campaign. Ontol Matching

  25. Huang J, Dang J, Vidal JM, Huhns MN (2007) Ontology matching using an artificial neural network to learn weights. In: IJCAI workshop on semantic Web for collaborative knowledge acquisition

  26. Ji Q, Liu W, Qi G, Bell DA (2006) LCS: a linguistic combination system for ontology matching. In: KSEM 2006, pp 176–189

  27. Jordan MI, Bishop CM (1997) Neural networks. The computer science and engineering handbook, pp 536–556

  28. Kiefer C, Bernstein A, Stocker M (2007) The fundamentals of iSPARQL: a virtual triple approach for similarity-based semantic Web tasks. In: ISWC/ASWC 2007, pp 295–309

  29. Lambrix P, Tan H (2007) A tool for evaluating ontology alignment strategies. J Data Semant 8: 182–202

    Google Scholar 

  30. Langley P (1994) Elements of machine learning. ISBN 1-55860-301-8

  31. Lee Y, Sayyadian M, Doan A, Rosenthal A (2001) eTuner: tuning schema matching software using synthetic scenarios. VLDB J 16(1): 97–122

    Google Scholar 

  32. Levenshtein V (1966) Binary codes capable of correcting deletions, insertions and reversals. Soviet Phys Doklady 10: 707–710

    MathSciNet  Google Scholar 

  33. Li Y, Li JZ, Zhang D, Tang J (2006) Result of ontology alignment with RiMOM at OAEI’06. Ontol Matching

  34. Maedche A, Motik B, Silva N, Volz R (2002) MAFRA—a MApping FRAmework for distributed ontologies. In EKAW 2002, pp 235–250

  35. Madhavan J, Bernstein PA, Rahm E (2001) Generic schema matching with cupid. In: VLDB 2001, pp 49–58

  36. Maguitman A, Menczer F, Erdinc F, Roinestad H, Vespignani A (2006) Algorithmic computation and approximation of semantic similarity. World Wide Web 9(4): 431–456

    Article  Google Scholar 

  37. Martinez-Gil J, Alba E, Aldana-Montes JF (2008) Optimizing ontology alignments by using genetic algorithms. In: Proceedings of the workshop on nature based reasoning for the semantic Web. Karlsruhe, Germany

  38. Martinez-Gil J, Navas-Delgado I, Aldana-Montes JF (2008) SIFO. An efficient taxonomical matcher for ontology alignment. Technical Report ITI-08-3. Department of Languages and Computing Sciences, University of Malaga

  39. Martinez-Gil J, Navas-Delgado I, Polo-Marquez A, Aldana-Montes JF (2008) Comparison of textual renderings of ontologies for improving their alignment. In: Proceedings of the second international conference on complex, intelligent and software intensive systems. Barcelona, Spain, pp 871–876

  40. Melnik S, Garcia-Molina H, Rahm E (2002) Similarity flooding: a versatile graph matching algorithm and its application to schema matching. In: Proceedings of international conference on data engineering, pp 117–128

  41. Mochol M, Bontas-Simperl EP (2006) A high-level architecture of a metadata-based ontology matching framework. In: DEXA workshops, pp 354–358

  42. Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1): 31–88

    Article  Google Scholar 

  43. Niedbala S (2006) OWL-CtxMatch in the OAEI 2006 alignment contest. Ontol Matching

  44. Pappa GL, Freitas AA (2009) Evolving rule induction algorithms with multi-objective grammar-based genetic programming. Knowl Inf Syst 19(3): 283–309

    Article  Google Scholar 

  45. Pfitzner D, Leibbrandt R, Powers D (2009) Characterization and evaluation of similarity measures for pairs of clusterings. Knowl Inf Syst 19(3): 361–394

    Article  Google Scholar 

  46. Roitman H, Gal A (2006) OntoBuilder: fully automatic extraction and consolidation of ontologies from Web sources using sequence semantics. In: EDBT workshops 2006, pp 573–576

  47. Rosenfeld B, Feldman R (2009) Self-supervised relation extraction from the Web. Knowl Inf Syst 17(1): 17–33

    Article  Google Scholar 

  48. Salton G, Buckley C (1990) Improving retrieval performance by relevance feedback. JASIS 41(4): 288–297

    Article  Google Scholar 

  49. Stoilos G, Stamou GB, Kollias SD (2005) A string metric for ontology alignment. In: Proceedings of international semantic Web conference 2005, pp 624–637

  50. Kewei T, Yong Y: CMC: combining multiple schema-matching strategies based on credibility prediction. In: DASFAA 2005, pp 888–893

  51. Ukkonen E (1992) Approximate string matching with q-grams and maximal matches. Theor Comput Sci 92(1): 191–211

    Article  MATH  MathSciNet  Google Scholar 

  52. Wang J, Ding Z, Jiang C (2006) GAOM: genetic algorithm based ontology matching. In: Proceedings of IEEE Asia–Pacific conference on services computing, pp 888–893

  53. Wang P, Hu J, Zeng HJ, Chen Z (2009) Using Wikipedia knowledge to improve text classification. Knowl Inf Syst 19(3): 265–281

    Article  Google Scholar 

  54. Widdows D (2004) Geometry and meaning. The University of Chicago Press, Chicago

    MATH  Google Scholar 

  55. Woon WL, Wong KD (2009) String alignment for automated document versioning. Knowl Inf Syst 18(3): 293–309

    Article  Google Scholar 

  56. WordNet (2008) http://wordnet.princeton.edu

  57. Ziegler P, Kiefer C, Sturm C, Dittrich KR, Bernstein A (2006) Detecting similarities in ontologies with the SOQA-SimPack Toolkit. In: Proceedings of EDBT 2006, pp 59–76

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Aldana-Montes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Gil, J., Aldana-Montes, J.F. Evaluation of two heuristic approaches to solve the ontology meta-matching problem. Knowl Inf Syst 26, 225–247 (2011). https://doi.org/10.1007/s10115-009-0277-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-009-0277-0

Keywords

Navigation