[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Maximal quadratic-free sets

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined by a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. This citation deals with S being the lattice, but the argument extends trivially to any closed S.

  2. The original motivation to look into the projection was to plot high-dimensional examples. These plots suggested that the complement of \({{\,\mathrm{proj}\,}}_{L^\perp } S_{\le 0}\) is formed by two disjoint convex sets. This motivated the definition and study of (5.7) below.

References

  1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets. In: Goemans, M., Correa, J. (eds.) Integer Programming And Combinatorial Optimization, pp. 37–48. Springer (2013)

  2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233–256 (2010)

    Article  MathSciNet  Google Scholar 

  3. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau. In: Integer Programming and Combinatorial Optimization, pp. 1–15. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72792-7_1

  4. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971). https://doi.org/10.1287/opre.19.1.19

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010). https://doi.org/10.1287/moor.1100.0461

    Article  MathSciNet  MATH  Google Scholar 

  6. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168 (2010)

    Article  MathSciNet  Google Scholar 

  7. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal inequalities. SIAM J. Discrete Math. 33(2), 755–783 (2019). https://doi.org/10.1137/17m1117070

    Article  MathSciNet  MATH  Google Scholar 

  8. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic surfaces having fixed intersections with two hyperplanes. Discrete Appl. Math. 161(16–17), 2778–2793 (2013)

    Article  MathSciNet  Google Scholar 

  9. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. In: Numerical Analysis and Optimization, pp. 1–35. Springer (2015)

  10. Bienstock, D., Chen, C., Muñoz, G.: Outer-product-free sets for polynomial optimization and oracle-based cuts. Math. Program 1–44 (2020)

  11. Bienstock, D., Chen, C., Muñoz, G.: Intersection cuts for polynomial optimization. In: Integer Programming and Combinatorial Optimization, pp. 72–87. Springer (2019). https://doi.org/10.1007/978-3-030-17953-3_6

  12. Bodur, M., Dash, S., Günlük, O.: Cutting planes from extended lp formulations. Math. Program. 161(1–2), 159–192 (2017)

    Article  MathSciNet  Google Scholar 

  13. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear programming problems. Progress in Combinatorial Optimization, pp. 521–541 (2011)

  14. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34(3), 538–546 (2009). https://doi.org/10.1287/moor.1080.0370

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

  16. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162(1–2), 393–429 (2017)

    Article  MathSciNet  Google Scholar 

  17. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of intersection cuts for qcqps. Tech. Rep. 20-29, ZIB, Takustr. 7, 14195 Berlin (2020)

  18. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of intersection cuts for qcqps. In: IPCO, pp. 134–147 (2021)

  19. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2015). https://doi.org/10.1287/moor.2014.0670

    Article  MathSciNet  MATH  Google Scholar 

  20. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection cuts. Sur. Oper. Res. Manag. Sci. 16(2), 105–120 (2011). https://doi.org/10.1016/j.sorms.2011.03.001

    Article  MATH  Google Scholar 

  21. Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer (2014)

  22. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math. Program. 152(1–2), 643–651 (2015)

    Article  MathSciNet  Google Scholar 

  23. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corresponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Integer Programming and Combinatorial Optimization, pp. 463–475. Springer (2008)

  24. Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J. Optim. 20(6), 2890–2912 (2010). https://doi.org/10.1137/090754388

    Article  MathSciNet  MATH  Google Scholar 

  25. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel optimization. In: Integer Programming and Combinatorial Optimization, pp. 77–88. Springer (2016). https://doi.org/10.1007/978-3-319-33461-5_7

  26. Fischetti, M., Monaci, M.: A branch-and-cut algorithm for mixed-integer bilinear programming. Eur. J. Oper. Res. (2019). https://doi.org/10.1016/j.ejor.2019.09.043

    Article  MATH  Google Scholar 

  27. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973). https://doi.org/10.1287/opre.21.1.123

    Article  MathSciNet  MATH  Google Scholar 

  28. Goberna, M., González, E., Martínez-Legaz, J., Todorov, M.: Motzkin decomposition of closed convex sets. J. Math. Anal. Appl. 364(1), 209–221 (2010). https://doi.org/10.1016/j.jmaa.2009.10.015

    Article  MathSciNet  MATH  Google Scholar 

  29. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3–3(1), 23–85 (1972). https://doi.org/10.1007/bf01584976

    Article  MathSciNet  MATH  Google Scholar 

  30. Inc., W.R.: Mathematica, Version 12.3.1. https://www.wolfram.com/mathematica. Champaign, IL (2021)

  31. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. Math. Oper. Res. 41(2), 477–510 (2015)

    Article  MathSciNet  Google Scholar 

  32. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. Math. Program. 154(1–2), 463–491 (2015)

    Article  MathSciNet  Google Scholar 

  33. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  34. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry, pp. 157–270. Springer (2009)

  35. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part i—convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665

    Article  MATH  Google Scholar 

  36. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

    Article  MathSciNet  Google Scholar 

  37. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: Convexification techniques for structured sets. Math. Program. 155(1–2), 575–611 (2016)

    Article  MathSciNet  Google Scholar 

  38. Morán, D., Dey, S.S.: On maximal s-free convex sets. SIAM J. Discrete Math. 25(1), 379–393 (2011). https://doi.org/10.1137/100796947

    Article  MathSciNet  MATH  Google Scholar 

  39. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 307–321. Springer, Cham (2020)

  40. Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)

  41. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. Preprint arXiv:1812.10160 (2018)

  42. Serrano, F.: Intersection cuts for factorable MINLP. In: Integer Programming and Combinatorial Optimization, pp. 385–398. Springer (2019). https://doi.org/10.1007/978-3-030-17953-3_29

  43. Serrano, F., Schwarz, R., Gleixner, A.: On the relation between the extended supporting hyperplane algorithm and kelley’s cutting plane algorithm. Preprint arXiv:1905.08157 (2019)

  44. Shahabsafa, M., Góez, J.C., Terlaky, T.: On pathological disjunctions and redundant disjunctive conic cuts. Oper. Res. Lett. 46(5), 500–504 (2018)

    Article  MathSciNet  Google Scholar 

  45. Shor, N.Z.: Quadratic optimization problems. Soviet J. Comput. Syst. Sci. 25, 1–11 (1987)

    MathSciNet  MATH  Google Scholar 

  46. Solovev, V.N.: On a criterion for convexity of a positive-homogeneous function. Math. USSR-Sbornik 46(2), 285–290 (1983). https://doi.org/10.1070/sm1983v046n02abeh002787

    Article  Google Scholar 

  47. Towle, E., Luedtke, J.: Intersection disjunctions for reverse convex sets. Preprint arXiv:1901.02112 (2019)

  48. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

  49. Yıldız, S., Kılınç-Karzan, F.: Low-complexity relaxations and convex hulls of disjunctions on the positive semidefinite cone and general regular cones. Optimization Online (2016)

Download references

Acknowledgements

We are indebted to Franziska Schlösser for several inspiring conversations. We would like to thank Stefan Vigerske, Antonia Chmiela, Ksenia Bestuzheva, Nils-Christian Kempke and Joseph Paat for helpful discussions. We would also like to thank the two anonymous reviewers for their valuable feedback. Lastly, we would like to acknowledge the support of the IVADO Institute for Data Valorization for their support through the IVADO Post-Doctoral Fellowship program and to the IVADO-ZIB academic partnership. The described research activities are funded by the German Federal Ministry for Economic Affairs and Energy within the project EnBA-M (ID: 03ET1549D). The work for this article has been (partly) conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF Grant Numbers 05M14ZAM, 05M20ZBM). Financial support was also provided by the Government of Chile through the FONDECYT Grant Number 11190515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Removing strict convexity matters

In Sect. 4 we construct a maximal \(S^h\)-free set for \(S^h= \{ (x,y) \in \mathbb {R}^{n+m} \,:\,\Vert x\Vert \le \Vert y\Vert \}\) using a concave underestimator of the function \(\Vert x\Vert - \Vert y\Vert \). It is worthwhile to show what happens if we use the same approach with an equivalent description of \(S^h\), namely

$$\begin{aligned} S^h= \{ (x,y) \in \mathbb {R}^{n+m} \,:\,\Vert x\Vert ^2 \le \Vert y\Vert ^2 \}. \end{aligned}$$

Recall we assume we are given \(({{\bar{x}}}, {{\bar{y}}} )\) such that \(\Vert \bar{x}\Vert ^2 > \Vert {{\bar{y}}}\Vert ^2\). A concave underestimator of \(f(x,y) = \Vert x\Vert ^2 - \Vert y\Vert ^2\), tight at \(({\bar{x}}, {\bar{y}})\), is given by \(\Vert {\bar{x}}\Vert ^2 + 2 \Vert {\bar{x}}\Vert (x - {\bar{x}}) - \Vert y\Vert ^2\). This concave underestimator yields the \(S^h\)-free set \(\{ (x,y) \in \mathbb {R}^{n+m} \,:\,\Vert {\bar{x}}\Vert ^2 + 2 \Vert {\bar{x}}\Vert (x - {\bar{x}}) - \Vert y\Vert ^2 \ge 0 \}\). A simple example shows that such an \(S^h\)-free set is not maximal.

Example A.1

The case \(n=m=1\) with \({\bar{x}}= 3\) yields the \(S^h\)-free set

$$\begin{aligned} C = \{ (x,y) \in \mathbb {R}^{2} \,:\,-9 + 6 x - y^2 \ge 0 \} \end{aligned}$$

In Fig. 8 we can see that the set is not maximal \(S^h\)-free.

Fig. 8
figure 8

\(S^h\) in Example A.1 (blue) and the \(S^h\)-free set constructed using a concave underestimator of \(\Vert x\Vert ^2 - \Vert y\Vert ^2\) (orange) (colour figure online)

The problem seems to be that \(\Vert x\Vert ^2\) is a strictly convex function. Indeed, suppose \(S = \{ x \in \mathbb {R}^n \,:\,f(x) \le 0 \}\) where f is strictly convex. The S-free set obtained via a concave underestimator at \({\bar{x}}\) is \(C = \{ x \in \mathbb {R}^n \,:\,f({\bar{x}}) + \nabla f({\bar{x}})(x - {\bar{x}}) \ge 0\}\). It is not hard to see that the strict convexity of f implies that C is not maximal S-free. The reason is that the linearization of f at \({\bar{x}}\notin S\) will not support the region S. On the other hand, if f is instead sublinear, then any linearization of f will support S. See [43] for an extended discussion on this phenomenon.

1.2 Technical results

Lemma 4.1

Let \(\phi : \mathbb {R}^n \rightarrow \mathbb {R}\) be a sublinear function, \(\lambda \in D_1(0)\), and let

$$\begin{aligned} C = \{ (x,y) \,:\,\phi (y) \le \lambda ^{\textsf {T} }x \}. \end{aligned}$$

Let \(({\bar{x}}, {\bar{y}}) \in C\) be such that \(\phi \) is differentiable at \({\bar{y}}\) and \(\phi ({\bar{y}}) = \lambda ^{\textsf {T} }{\bar{x}}\). Then \(({\bar{x}}, {\bar{y}})\) exposes the valid inequality \(-\lambda ^{\textsf {T} }x + \nabla \phi ({\bar{y}})^{\textsf {T} }y \le 0\).

Proof

We need to verify both conditions of Definition 3.2. As \(\phi \) is positively homogeneous and differentiable at \({\bar{y}}\), then \(\phi ({\bar{y}}) = \nabla \phi ({\bar{y}}) {\bar{y}}\). Thus, evaluating \(-\lambda ^{\textsf {T} }x + \nabla \phi ({\bar{y}})^{\textsf {T} }y\) at \(({\bar{x}}, {\bar{y}})\) yields \(-\lambda ^{\textsf {T} }{\bar{x}}+ \phi ({\bar{y}})\), which is 0 by hypothesis. Thus the inequality is tight at \(({\bar{x}}, {\bar{y}})\).

Now, let \(\alpha ^{\textsf {T} }x + \gamma ^{\textsf {T} }y \le \delta \) be a non-trivial valid inequality tight at \(({\bar{x}}, {\bar{y}})\). Then, \(\delta = \alpha ^{\textsf {T} }{\bar{x}}+ \gamma ^{\textsf {T} }{\bar{y}}\) and we can rewrite the inequality as \(\alpha ^{\textsf {T} }(x - {\bar{x}}) + \gamma ^{\textsf {T} }(y - {\bar{y}}) \le 0\). Notice that \((\phi (y) \lambda , y) \in C\), thus, \(\alpha ^{\textsf {T} }\lambda (\phi (y) - \phi ({\bar{y}})) + \gamma ^{\textsf {T} }(y - {\bar{y}}) \le 0\) for every \(y \in \mathbb {R}^m\). Subtracting \(\alpha ^{\textsf {T} }\lambda \nabla \phi ({\bar{y}})^{\textsf {T} }(y - {\bar{y}})\) and dividing by \(\Vert y - {\bar{y}}\Vert \) we obtain the equivalent expression

$$\begin{aligned} \alpha ^{\textsf {T} }\lambda \frac{\phi (y) - \phi ({\bar{y}}) - \nabla \phi ({\bar{y}})^{\textsf {T} }(y - {\bar{y}})}{\Vert y - {\bar{y}}\Vert } \le (-\gamma -\alpha ^{\textsf {T} }\lambda \nabla \phi ({\bar{y}}))^{\textsf {T} }\frac{y - {\bar{y}}}{\Vert y - {\bar{y}}\Vert }. \end{aligned}$$

Since \(\phi \) is differentiable at \({\bar{y}}\), the limit when y approaches \({\bar{y}}\) of the left hand side of the above expression is 0. However, one can make the expression \(\frac{y - {\bar{y}}}{\Vert y - {\bar{y}}\Vert }\) converge to any point of \(D_1(0)\). Therefore,

$$\begin{aligned} 0 \le (-\gamma -\alpha ^{\textsf {T} }\lambda \nabla \phi ({\bar{y}}))^{\textsf {T} }\beta \end{aligned}$$

for every \(\beta \in D_1(0)\). This implies that \(\gamma = -\alpha ^{\textsf {T} }\lambda \nabla \phi ({\bar{y}})\). From here we see that \(\alpha \ne 0\) as otherwise \(\alpha = \gamma = 0\) and the inequality would be trivial.

Given that any (x, 0) such that \(\lambda ^{\textsf {T} }x = 0\) belongs to C, it follows that \(\alpha \) is parallel to \(\lambda \), i.e., there exists \(\nu \in \mathbb {R}\) such that \(\alpha = \nu \lambda \). Furthermore, \((\mu \lambda , 0) \in C\) for every \(\mu \ge 0\), implies that \(0 > \alpha ^{\textsf {T} }\lambda = \nu \). Therefore, \(\gamma = - \nu \nabla \phi ({\bar{y}})\) and the inequality reads \(\nu \lambda ^{\textsf {T} }(x - {\bar{x}}) - \nu \nabla \phi ({\bar{y}})^{\textsf {T} }(y - {\bar{y}}) \le 0\). Dividing by \(|\nu |\) and using that \(-\lambda ^{\textsf {T} }x + \nabla \phi ({\bar{y}})^{\textsf {T} }y \le 0\) is tight at \(({\bar{x}}, {\bar{y}})\), we conclude that the inequality can be written as

$$\begin{aligned} -\lambda ^{\textsf {T} }x + \nabla \phi ({\bar{y}})^{\textsf {T} }y \le 0. \end{aligned}$$

\(\square \)

Proposition A1

Let \(a,\lambda \in D_1(0)\), \(\lambda \ne \pm a\) and let \(d \in \mathbb {R}^m\) be such that \(\Vert d\Vert \le 1\). The (Lagrangian) dual problem of

$$\begin{aligned} \max _x \{ \lambda ^{\textsf {T} }x \,:\,\Vert x\Vert \le \Vert y\Vert , a^{\textsf {T} }x + d^{\textsf {T} }y \le 0 \} \end{aligned}$$
(A.1)

is

$$\begin{aligned} \inf _\theta \{ \Vert \lambda - \theta a\Vert \Vert y\Vert - \theta d^{\textsf {T} }y \,:\,\theta \ge 0 \}. \end{aligned}$$
(A.2)

The optimal solution to (A.1) is \(x : \mathbb {R}^m \rightarrow \mathbb {R}^n\),

$$\begin{aligned} x(y) = {\left\{ \begin{array}{ll} \lambda \Vert y\Vert , &{}\text { if } \lambda ^{\textsf {T} }a \Vert y\Vert + d^{\textsf {T} }y \le 0 \\ \sqrt{\frac{\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2}{1 - (\lambda ^{\textsf {T} }a)^2}} \lambda -\left( d^{\textsf {T} }y + \lambda ^{\textsf {T} }a \sqrt{\frac{\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2}{1 - (\lambda ^{\textsf {T} }a)^2}} \right) a, &{}\text { otherwise. } \end{array}\right. }\nonumber \\ \end{aligned}$$
(A.3)

The optimal dual solution is \(\theta : \mathbb {R}^m \rightarrow \mathbb {R}_+ \cup \{+\infty \}\),

$$\begin{aligned} \theta (y) = {\left\{ \begin{array}{ll} 0, &{}\text { if } \lambda ^{\textsf {T} }a \Vert y\Vert + d^{\textsf {T} }y \le 0 \\ \lambda ^{\textsf {T} }a + d^{\textsf {T} }y \frac{\sqrt{1 - (\lambda ^{\textsf {T} }a)^2}}{\sqrt{\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2}}, &{}\text { otherwise. } \end{array}\right. } \end{aligned}$$
(A.4)

Here, \(\frac{1}{0} = +\infty \) and \(r + (+\infty ) = +\infty \) for every \(r \in \mathbb {R}\). Moreover, strong duality holds, that is, (A.1) = (A.2), and

$$\begin{aligned} ({\mathrm{A}}.1) = {\left\{ \begin{array}{ll} \Vert y\Vert , &{}\text { if } \lambda ^{\textsf {T} }a \Vert y\Vert + d^{\textsf {T} }y \le 0 \\ \sqrt{(\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2)(1 - (\lambda ^{\textsf {T} }a)^2)} - d^{\textsf {T} }y \lambda ^{\textsf {T} }a, &{}\text { otherwise. } \end{array}\right. }\nonumber \\ \end{aligned}$$
(A.5)

Finally, (A.5) holds even if \(\lambda = \pm a\).

Proof

First, note that since \(\lambda \ne \pm a\) and \(\Vert d\Vert \le 1\), x(y) and \(\theta (y)\) are defined for every \(y \in \mathbb {R}^m\). Second, to make some of the calculations that follow more amenable, let \(S(y) = \sqrt{\frac{\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2}{1 - (\lambda ^{\textsf {T} }a)^2}}\). The Lagrangian of (A.1) is \(L : \mathbb {R}^n \times \mathbb {R}_+^2 \rightarrow \mathbb {R}\),

$$\begin{aligned} L(x,\mu ,\theta ) = \lambda ^{\textsf {T} }x - \mu (\Vert x\Vert - \Vert y\Vert ) - \theta (a^{\textsf {T} }x + d^{\textsf {T} }y). \end{aligned}$$

Thus, the dual function is

$$\begin{aligned} d(\mu , \theta ) = \max _x L(x,\mu ,\theta ). \end{aligned}$$

We have that \(d(\mu , \theta )\) is infinity whenever \(\mu < \Vert \lambda - a \theta \Vert \), and \(\mu \Vert y\Vert - \theta d^{\textsf {T} }y\) otherwise. Hence, the dual problem, \(\min _{\theta , \mu \ge 0} d(\mu , \theta )\), is \(\min \{ \mu \Vert y\Vert - \theta d^{\textsf {T} }y \theta \,:\,\theta \ge 0, \mu \ge \Vert \lambda - a \theta \Vert \}\) which is (A.2).

Let us assume that \(\lambda ^{\textsf {T} }a \Vert y\Vert + d^{\textsf {T} }y \le 0\). Clearly, \(x(y) = \lambda \Vert y\Vert \) is feasible for (A.1). Its objective value is \(\Vert y\Vert \). On the other hand, \(\theta (y) = 0\) is always feasible for (A.1). Its objective value is also \(\Vert y\Vert \), therefore, x(y) is the primal optimal solution and \(\theta (y)\) the dual optimal solution.

Now let us consider the case \(\lambda ^{\textsf {T} }a \Vert y\Vert + d^{\textsf {T} }y > 0\). Let us check that \(\theta (y)\) is dual feasible, that is, \(\theta (y) \ge 0\). Note that, due to the positive homogeneity of \(\theta (y)\) and the condition \(\lambda ^{\textsf {T} }a \Vert y\Vert + d^{\textsf {T} }y > 0\) with respect to y, we can assume without loss of generality that \(\Vert y\Vert = 1\).

Let \(\alpha = \lambda ^{\textsf {T} }a\) and \(\beta = d^{\textsf {T} }y\). Since \(\theta (d) = +\infty \ge 0\) when \(\Vert d\Vert =1\), we can assume that \(y \ne d\) when \(\Vert d\Vert =1\). Note that the same does not occur when \(y = -d\) since we are assuming \(\lambda ^{\textsf {T} }a \Vert y\Vert + d^{\textsf {T} }y > 0\). Thus, \(\alpha , \beta \in (-1,1)\).

We will prove that \(\theta (y) \sqrt{1 - \beta ^2} = \alpha \sqrt{1 - \beta ^2} + \beta \sqrt{1 - \alpha ^2} \ge 0\), which implies that \(\theta (y) \ge 0\). If \(\alpha , \beta \ge 0\), then we are done. As \(\alpha + \beta > 0\), at least one of them must be positive. Let us assume \(\alpha > 0\) and \(\beta < 0\), the other case is analogous. Then, \(\alpha > - \beta \ge 0\). This implies that \(\alpha ^2 > \beta ^2\). Subtracting \(\alpha ^2 \beta ^2\), factorizing and taking square roots we obtain the desired inequality.

Let us compute the value of the dual solution \(\theta (y)\). First, \(y = d\) and \(\Vert d\Vert = 1\), \(\theta (y) = +\infty \), which means that the optimal value is

$$\begin{aligned} \lim _{\theta \rightarrow +\infty } \Vert \lambda - \theta a\Vert - \theta = - \lambda ^{\textsf {T} }a. \end{aligned}$$

One way of computing this limit is to multiply and divide the expression by \(\tfrac{\Vert \lambda - \theta a\Vert + \theta }{\theta }\), expand, and simplify the numerator and denominator until one obtains something simple enough.

Now assume \(y \ne d\) if \(\Vert d\Vert = 1\). Observe that \(\Vert \lambda - \theta (y) a\Vert \Vert y\Vert - \theta (y) d^{\textsf {T} }y =\sqrt{\Vert \lambda - \theta (y) a\Vert ^2} \Vert y\Vert - \theta (y) d^{\textsf {T} }y\). We have that

$$\begin{aligned} \Vert \lambda - \theta (y) a\Vert ^2&= 1 + \theta (y)(\theta (y) - 2\lambda ^{\textsf {T} }a) \\&= 1 + (\theta (y) - \lambda ^{\textsf {T} }a + \lambda ^{\textsf {T} }a)(\theta (y) - \lambda ^{\textsf {T} }a - \lambda ^{\textsf {T} }a) \\&= 1 + (\theta (y) - \lambda ^{\textsf {T} }a)^2 - (\lambda ^{\textsf {T} }a)^2. \end{aligned}$$

Replacing \(\theta (y)\), we obtain

$$\begin{aligned} \Vert \lambda - \theta (y) a\Vert ^2&= 1 + \frac{(d^{\textsf {T} }y)^2}{S(y)} - (\lambda ^{\textsf {T} }a)^2 \\&= \frac{1}{S(y)}(S^2(y) (1 - (\lambda ^{\textsf {T} }a)^2) + (d^{\textsf {T} }y)^2) = \frac{\Vert y\Vert ^2}{S^2(y)}. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert \lambda - \theta (y) a\Vert \Vert y\Vert - \theta (y) d^{\textsf {T} }y&= \frac{\Vert y\Vert ^2}{S(y)} - d^{\textsf {T} }y \lambda ^{\textsf {T} }a - \frac{(d^{\textsf {T} }y)^2}{S(y)}\\&= \frac{\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2}{S(y)} - d^{\textsf {T} }y \lambda ^{\textsf {T} }a \\&= \sqrt{(\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2)(1 - (\lambda ^{\textsf {T} }a)^2)} - d^{\textsf {T} }y \lambda ^{\textsf {T} }a. \end{aligned}$$

Let us now check the feasibility of x(y). Let us first check that \(\Vert x(y)\Vert ^2 \le \Vert y\Vert ^2\). We have \(\Vert x(y)\Vert ^2 = S^2(y) - 2 S(y)(d^{\textsf {T} }y + S(y) \lambda ^{\textsf {T} }a) \lambda ^{\textsf {T} }a + (d^{\textsf {T} }y + \lambda ^{\textsf {T} }a S(y))^2\). Expanding and removing common terms yields \(\Vert x(y)\Vert ^2 = S^2(y)(1 - (\lambda ^{\textsf {T} }a)^2) + (d^{\textsf {T} }y)^2 = \Vert y\Vert ^2\). Thus, the first constraint is satisfied.

To check the second constraint just notice that, as \(\Vert a\Vert = 1\), \(a^{\textsf {T} }x(y) = -d^{\textsf {T} }y\).

The primal value of x(y) is

$$\begin{aligned} \lambda ^{\textsf {T} }x(y) = S(y)(1 - (\lambda ^{\textsf {T} }a)^2) - d^{\textsf {T} }y \lambda ^{\textsf {T} }a = \sqrt{(\Vert y\Vert ^2 - (d^{\textsf {T} }y)^2)(1 - (\lambda ^{\textsf {T} }a)^2)} - d^{\textsf {T} }y \lambda ^{\textsf {T} }a. \end{aligned}$$

As it coincides with the value of the dual solution, even when \(y = d\) and \(\Vert d\Vert =1\), we conclude that both are optimal.

It only remains to check (A.5) for \(\lambda = \pm a\). If \(\lambda = -a\), then the linear constraint becomes \(\lambda ^{\textsf {T} }x \ge d^{\textsf {T} }y\) and the optimal solution is \(x = \lambda \Vert y\Vert \). If \(\lambda = a\), then the linear constraint becomes \(\lambda ^{\textsf {T} }x \le -d^{\textsf {T} }y\) and \(x = -d^{\textsf {T} }y \lambda \) is then optimal. In both cases (A.5) holds. \(\square \)

Lemma A1

Consider the set

$$\begin{aligned} S^g= \{ (x,y) \mathbb {R}^{n+m} \,:\,\Vert x\Vert \le \Vert y\Vert ,\ a^{\textsf {T} }x + d^{\textsf {T} }y = -1 \} \end{aligned}$$

with ad such that \(\Vert a\Vert > \Vert d\Vert \). Let \(\lambda , \beta \in D_1(0)\) be two vectors satisfying \(\lambda ^{\textsf {T} }a + d^{\textsf {T} }\beta \ge 0\) and consider \(C_{2}\) defined in (5.8).

Then, the face of \(C_{2}\) defined by the valid inequality \(-\lambda ^{\textsf {T} }x + \nabla \phi _{\lambda ,a,d}(\beta )^{\textsf {T} }y \le 0\) does not intersect \(S^g\).

Proof

Recall that in this case \(C_{2}= C_{\phi _{\lambda ,a,d}}\). By contradiction, suppose that \(({\bar{x}}, {\bar{y}}) \in C_{2}\) is such that

$$\begin{aligned} ({\bar{x}}, {\bar{y}}) \in S \quad \wedge \quad -\lambda ^{\textsf {T} }{\bar{x}}+ \nabla \phi _{\lambda ,a,d}(\beta )^{\textsf {T} }{\bar{y}}= 0. \end{aligned}$$

The latter equality and the fact that \(\phi _{\lambda ,a,d}\) is sublinear implies \(\phi _{\lambda ,a,d}({\bar{y}}) = \lambda ^{\textsf {T} }{\bar{x}}\). Moreover, \({\bar{x}}\) is a feasible solution of the optimization problem \(\phi _{\lambda ,a,d}({\bar{y}})\), which implies it is an optimal solution.

By Lemma 4.1 we know \(({\bar{x}}, {\bar{y}})\) exposes the valid inequality of \(C_{2}\) given by \(-\lambda ^{\textsf {T} }x + \nabla \phi _{\lambda ,a,d}({\bar{y}})^{\textsf {T} }y \le 0\). By definition of exposing point this means

$$\begin{aligned} \nabla \phi _{\lambda ,a,d}({\bar{y}}) = \nabla \phi _{\lambda ,a,d}(\beta ). \end{aligned}$$

From (6.9), since W is invertible, we can see that this implies \(\beta = \frac{{\bar{y}}}{\Vert {\bar{y}}\Vert }\). However, as \(\lambda ^{\textsf {T} }a + d^{\textsf {T} }\beta \ge 0\), the optimal solution of in the definition of \(\phi _{\lambda ,a,d}({\bar{y}})\), \(x_0\), must satisfy \(a^{\textsf {T} }x_0 + d^{\textsf {T} }{\bar{y}}= 0\). This contradicts \(\phi _{\lambda ,a,d}({\bar{y}}) = \lambda ^{\textsf {T} }{\bar{x}}\), since \({\bar{x}}\) is an optimal solution but \(a^{\textsf {T} }{\bar{x}}+ d^{\textsf {T} }{\bar{y}}= -1\). \(\square \)

Lemma 6.3

For every \(\beta \in D_1(0)\) and every \(\mu \in \mathbb {R}\), \(\mu > 0\), it holds that \(r(\beta ) = \theta (\mu \beta )\), where \(\theta (\mu \beta )\) is the optimal dual solution of the optimization problem (5.7).

Proof

From (A.4), we see that it suffices to show the result for \(\mu =1\). If \(\lambda ^{\textsf {T} }a + d^{\textsf {T} }\beta \le 0\), \(r(\beta ) = 0 = \theta (\beta )\). Let \(\beta \in D_1(0)\) be such that \(\lambda ^{\textsf {T} }a + d^{\textsf {T} }\beta > 0\). Then,

$$\begin{aligned} r(\beta )&= \frac{d^{\textsf {T} }\beta + \lambda ^{\textsf {T} }a \phi _{\lambda ,a,d}(\beta )}{\phi _{\lambda ,a,d}(\beta ) + d^{\textsf {T} }\beta \lambda ^{\textsf {T} }a} = \frac{d^{\textsf {T} }\beta + \lambda ^{\textsf {T} }a \sqrt{1 - (\lambda ^{\textsf {T} }a)^2} \sqrt{1 - (d^{\textsf {T} }\beta )^2} - d^{\textsf {T} }\beta (\lambda ^{\textsf {T} }a)^2}{\sqrt{1 - (\lambda ^{\textsf {T} }a)^2} \sqrt{1 - (d^{\textsf {T} }\beta )^2}} \\&= \frac{d^{\textsf {T} }\beta \sqrt{1 - (\lambda ^{\textsf {T} }a)^2}}{\sqrt{1 - (d^{\textsf {T} }\beta )^2}} + \lambda ^{\textsf {T} }a = \theta (\beta ). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, G., Serrano, F. Maximal quadratic-free sets. Math. Program. 192, 229–270 (2022). https://doi.org/10.1007/s10107-021-01738-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-021-01738-8

Mathematics Subject Classification

Navigation