Abstract
The problem of maximizing non-negative monotone submodular functions under a certain constraint has been intensively studied in the last decade. In this paper, we address the problem for functions defined over the integer lattice. Suppose that a non-negative monotone submodular function \(f:\mathbb {Z}_+^n \rightarrow \mathbb {R}_+\) is given via an evaluation oracle. Assume further that f satisfies the diminishing return property, which is not an immediate consequence of submodularity when the domain is the integer lattice. Given this, we design polynomial-time \((1-1/e-\epsilon )\)-approximation algorithms for a cardinality constraint, a polymatroid constraint, and a knapsack constraint. For a cardinality constraint, we also provide a \((1-1/e-\epsilon )\)-approximation algorithm with slightly worse time complexity that does not rely on the diminishing return property.
Similar content being viewed by others
Notes
Note that f is DR-submodular if and only if it is lattice submodular and satisfies the coordinate-wise concave condition: \(f(\varvec{x}+\varvec{\chi }_e) - f(\varvec{x}) \ge f(\varvec{x}+2\varvec{\chi }_e) - f(\varvec{x}+\varvec{\chi }_e)\) for any \(\varvec{x}\) and \(e \in E\) (see [27, Lemma 2.3]).
If \(n < 3\), by a similar argument, one can show that there exists \(\varvec{x}_0\) in the output of \(\textsf {PartialEnumeration}\) that attains \((1-\epsilon )\)-approximation.
References
Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among channels and influencers. In: Proceedings of the 21st International Conference on World Wide Web (WWW), pp. 381–388 (2012)
Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1497–1514 (2013)
Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 392–403 (2015)
Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time \((1/2)\)-approximation for unconstrained submodular maximization. In: Proceedings of the IEEE 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 649–658 (2012)
Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: Submodular maximization with cardinality constraints. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1433–1452 (2014)
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766 (2011)
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of IEEE 51st Annual Symposium on Foundations of Computer Science, pp. 575–584 (2010)
Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory Ser. B 188, 161–188 (1984)
Demaine, E.D., Hajiaghayi, M., Mahini, H., Malec, D.L., Raghavan, S., Sawant, A., Zadimoghadam, M.: How to influence people with partial incentives. In: Proceedings of the 23rd International World Wide Web Conference, pp. 937–948 (2014)
Feige, U.: A threshold of \(\ln n\) for approximating set cover. J. ACM 45, 634–652 (1998)
Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)
Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2005)
Gottschalk, C., Peis, B.: Submodular function maximization on the bounded integer lattice. In: Approximation and Online Algorithms: 13th International Workshop, WAOA 2015, Patras, Greece, 17–18 Sept 2015. Revised Selected Papers, pp. 133–144 (2015)
Iwata, S.: Submodular function minimization. Math. Program. 112(1), 45–64 (2007)
Iwata, S., Tanigawa, S.I., Yoshida, Y.: Improved approximation algorithms for \(k\)-submodular function maximization. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 404–413. Society for Industrial and Applied Mathematics, Philadelphia, PA (2016)
Kapralov, M., Post, I., Vondrák, J.: Online submodular welfare maximization: Greedy is optimal. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1216–1225 (2012)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)
Krause, A., Golovin, D.: Submodular function maximization. In: Bordeaux, L., Hamadi, Y., Kohli, P. (eds.) Tractability: Practical Approaches to Hard Problems, pp. 71–104. Cambridge University Press, Cambridge (2014)
Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of submodular functions. In: Proceedings of the 11th Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 912–920 (2010)
Lin, H., Bilmes, J.: A class of submodular functions for document summarization. In: Proceedings of the 12th Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 510–520 (2011)
Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions—II. Math. Program. Stud. 8, 73–87 (1978)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1996)
Shioura, A.: On the pipage rounding algorithm for submodular function maximization—a view from discrete convex analysis. Discrete Math. Algorithms Appl. 1(1), 1–23 (2009)
Singh, A., Guillory, A., Bilmes, J.: On bisubmodular maximization. In: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, pp. 1055–1063 (2012)
Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.: Optimal budget allocation: theoretical guarantee and efficient algorithm. In: Proceedings of the 31st International Conference on Machine Learning (ICML) (2014)
Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing return property on the integer lattice. In: Advances in Neural Information Processing Systems (NIPS) (2015)
Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the integer lattice. In: the Proceedings of the 18th Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 325–336 (2016)
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)
Ward, J., Živný, S.: Maximizing bisubmodular and \(k\)-submodular functions. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1468–1481 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Tasuku Soma is supported by JSPS Grant-in-Aid for JSPS Fellows. Yuichi Yoshida is supported by JST ERATO Grant Number JPMJER1305 and JSPS KAKENHI Grant Number JP17H04676.
Rights and permissions
About this article
Cite this article
Soma, T., Yoshida, Y. Maximizing monotone submodular functions over the integer lattice. Math. Program. 172, 539–563 (2018). https://doi.org/10.1007/s10107-018-1324-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-018-1324-y