[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Certification of real inequalities: templates and sums of squares

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the problem of certifying lower bounds for real-valued multivariate transcendental functions. The functions we are dealing with are nonlinear and involve semialgebraic operations as well as some transcendental functions like \(\cos ,\,\arctan ,\,\exp \), etc. Our general framework is to use different approximation methods to relax the original problem into polynomial optimization problems, which we solve by sparse sums of squares relaxations. In particular, we combine the ideas of the maxplus approximations (originally introduced in optimal control) and of the linear templates (originally introduced in static analysis by abstract interpretation). The nonlinear templates control the complexity of the semialgebraic relaxations at the price of coarsening the maxplus approximations. In that way, we arrive at a new—template based—certified global optimization method, which exploits both the precision of sums of squares relaxations and the scalability of abstraction methods. We analyze the performance of the method on problems from the global optimization literature, as well as medium-size inequalities issued from the Flyspeck project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Recall that for \(\gamma \geqslant 0\), a function \(\phi : \mathbb {R}^n\rightarrow \mathbb {R}\) is said to be \(\gamma \)-semiconvex if the function \(\mathbf {x}\mapsto \phi (\mathbf {x})+\frac{\gamma }{2}\Vert \mathbf {x} \Vert _2^2\) is convex.

  2. We presume that in [25, Lemma 3], “well-defined function \(f\)” stands for the fact that \(f\) can be evaluated in a non-ambiguous way on the considered domain.

  3. http://nl-certify.forge.ocamlcore.org/.

References

  1. Adje, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis. Log. Methods Comput. Sci. 8(1), 1–32 (2012). doi:10.2168/LMCS-8(1:1)2012

    Article  MathSciNet  Google Scholar 

  2. Akian, M., Gaubert, S., Kolokoltsov, V.: Set coverings and invertibility of functional Galois connections. In: Litvinov, G., Maslov, V. (eds.) Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics, vol. 377, pp. 19–51. American Mathematical Society, Providence, RI (2005)

    Chapter  Google Scholar 

  3. Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control Optim. 47(2), 817–848 (2008). doi:10.1137/060655286

    Article  MATH  MathSciNet  Google Scholar 

  4. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31(4), 635–672 (2005). doi:10.1007/s10898-004-9972-2

    Article  MATH  MathSciNet  Google Scholar 

  5. Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Certification of bounds of non-linear functions: the templates method. To appear in the Proceedings of Conferences on Intelligent Computer Mathematics, CICM 2013 Calculemus, Bath (2013a)

  6. Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation. To appear in the Proceedings of the European Control Conference, ECC’13, Zurich (2013b)

  7. Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Formal Proofs for Nonlinear Optimization. ArXiv e-prints 1404.7282 (2014)

  8. Berz, M., Makino, K.: Rigorous global search using taylor models. In: Proceedings of the 2009 Conference on Symbolic Numeric Computation, ACM, New York, NY, USA, SNC ’09, pp. 11–20 (2009). doi:10.1145/1577190.1577198

  9. Calafiore, G., Dabbene, F.: Reduced vertex set result for interval semidefinite optimization problems. J. Optim. Theory Appl. 139, 17–33 (2008). doi:10.1007/s10957-008-9423-1

    Article  MATH  MathSciNet  Google Scholar 

  10. Cannarsa, P., Sinestrari, C.: Semiconcave functions, Hamilton–Jacobi equations, and optimal control. In: Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston (2004) http://books.google.fr/books?id=kr-8FpVY2ooC

  11. Cartis, C., Gould, N.I.M., Toint, P.L.: Adaptive cubic regularisation methods for unconstrained optimization. Part i: motivation, convergence and numerical results. Math. Program. 127(2), 245–295 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chevillard, S., Joldes, M., Lauter, C.: Sollya: An environment for the development of numerical codes. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds). Mathematical Software—ICMS 2010, Springer, Heidelberg, Germany, Lecture Notes in Computer Science, vol. 6327, pp. 28–31 (2010)

  13. Fleming, W.H., McEneaney, W.M.: A max-plus-based algorithm for a Hamilton–Jacobi–Bellman equation of nonlinear filtering. SIAM J. Control Optim. 38(3), 683–710 (2000). doi:10.1137/S0363012998332433

    Article  MATH  MathSciNet  Google Scholar 

  14. Gaubert, S., McEneaney, W.M., Qu, Z.: Curse of dimensionality reduction in max-plus based approximation methods: theoretical estimates and improved pruning algorithms. In: CDC-ECC, IEEE, pp. 1054–1061 (2011)

  15. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions, 1st edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (2007)

    Book  MATH  Google Scholar 

  16. Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  17. Hales, T.C.: A proof of the Kepler conjecture. Math. Intell. 16, 47–58 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. (2) 162(3), 1065–1185 (2005). doi:10.4007/annals.2005.162.1065

  19. Hansen, E., Greenberg, R.: An interval newton method. Appl. Math. Comput. 12(2–3):89–98 (1983). doi:10.1016/0096-3003(83)90001-2, http://www.sciencedirect.com/science/article/pii/0096300383900012

  20. Hansen, E.R.: Sharpening interval computations. Reliab. Comput. 12(1), 21–34 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kaltofen, E.L., Li, B., Yang, Z., Zhi, L.: Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients. JSC 47(1), 1–15 (2012). in memory of Wenda Wu (1929–2009)

  22. Lakhoua, A.: Max-Plus Finite Element Method for the Numerical Resolution of Deterministic Optimal Control Problems. PhD thesis. University of Paris 6 (2007)

  23. Lasserre, J., Thanh, T.: Convex underestimators of polynomials. J. Glob. Optim. 56(1), 1–25 (2013). doi:10.1007/s10898-012-9974-4

    Article  MATH  MathSciNet  Google Scholar 

  24. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lasserre, J.B., Putinar, M.: Positivity and optimization for semi-algebraic functions. SIAM J. Optim. 20(6), 3364–3383 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Magron, V.: Nlcertify: A tool for formal nonlinear optimization. In: Hong, H., Yap, C. (eds). Mathematical Software—ICMS 2014, Lecture Notes in Computer Science, vol. 8592, pp. 315–320. Springer, Berlin (2014). doi:10.1007/978-3-662-44199-2_49

  27. Maso, G.: An Introduction to Gamma-Convergence. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  28. McEneaney, W.M.: Max-plus methods for nonlinear control and estimation. In: Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (2006)

  29. McEneaney, W.M.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. Control Optim. 46(4), 1239–1276 (2007). doi:10.1137/040610830

    Article  MATH  MathSciNet  Google Scholar 

  30. McEneaney, WM., Deshpande, A., Gaubert, S.: Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs. In: Proceedings of the 2008 American Control Conference, Seattle, Washington, USA, pp. 4684–4690 (2008). doi:10.1109/ACC.2008.458723

  31. Messine, F.: Extensions of affine arithmetic: application to unconstrained global optimization. JUCS 8(11), 992–1015 (2002)

  32. Montanher, T.M.: Intsolver: An Interval Based Toolbox for Global Optimization. Version 1.0, www.mathworks.com (2009)

  33. Nagata, J.: Modern General Topology. Bibliotheca Mathematica. North-Holland Pub. Co, Amsterdam (1974)

    Google Scholar 

  34. Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions, DIMACS Ser. In: Discrete Math. Theoret. Comput. Sci., vol. 60, American Mathematical Society, Providence, RI, pp 83–99 (2003)

  35. Peyrl, H., Parrilo, P.A.: Computing sum of squares decompositions with rational coefficients. Theor. Comput. Sci. 409(2), 269–281 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  38. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed) Proceedings of the Verification, Model Checking and Abstract Interpretation (VMCAI), Springer, Paris, France, LNCS, vol. 3385, pp. 21–47 (2005)

  39. Sridharan, S., Gu, M., James, M.R., McEneaney, W.M.: Reduced-complexity numerical method for optimal gate synthesis. Phys. Rev. A 82(042), 319 (2010). doi:10.1103/PhysRevA.82.042319

    Google Scholar 

  40. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17, 218–242 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zumkeller, R.: Rigorous Global Optimization. PhD thesis. École Polytechnique (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Magron.

Appendices

Appendix 1: Global optimization problems issued from the literature

The following test examples are taken from Appendix B in [4]. Some of these examples involve functions that depend on numerical constants, the values of which can be found there.

  • Hartman 3 (H3) \(\min _{\mathbf {x}\in [0, 1]^3} f(\mathbf {x}) = - \sum _{i=1}^4 c_i \exp \left[ - \sum _{j=1}^3 a_{i j} (x_j - p_{i j})^2\right] .\)

  • Hartman 6 (H6) \(\min _{\mathbf {x}\in [0, 1]^6} f(\mathbf {x}) = - \sum _{i=1}^4 c_i \exp \left[ - \sum _{j=1}^6 a_{i j} (x_j - p_{i j})^2\right] .\)

  • Mc Cormick (MC), with \(K = [-1.5, 4] \times [-3, 3] \): \(\min _{\mathbf {x}\in K} f(\mathbf {x}) = \sin (x_1 + x_2) + (x_1 - x_2)^2 - 1.5 x_1 + 2.5 x_2 + 1.\)

  • Modified Langerman (ML): \(\min _{\mathbf {x}\in [0, 10]^n} f(\mathbf {x}) = \sum _{j=1}^5 c_j \cos (d_j / \pi ) \exp (- \pi d_j) \), with \(d_j = \sum _{i=1}^n (x_i - a_{j i})^2.\)

  • Schwefel Problem (SWF): \(\min _{\mathbf {x}\in [1, 500]^n} f(\mathbf {x}) = - \sum _{i = 1}^{n} x_i \sin (\sqrt{x_i}).\)

Appendix 2: Proofs

1.1 Preliminary results

For the sequel, we need to recall the following definition.

Definition 8

(Modulus of continuity) Let \(u\) be a real univariate function defined on an interval \(I\). The modulus of continuity of \(u\) is defined as:

$$\begin{aligned} \omega (\delta ) := \mathop {\sup _{x_1, x_2 \in I}}_{\mid x_1 - x_2 \mid < \delta } \Big | u(x_1) - u(x_2) \Big | \end{aligned}$$

We shall also prove that \(\mathtt {unary\_approx}\) and \(\mathtt {reduce\_lift}\) return uniformly convergent approximations nets:

Proposition 4

Suppose that Assumption 4 holds. For every function \(r\) of the dictionary \(\mathcal {D}\), defined on a closed interval \(I\), the procedure \(\mathtt {unary\_approx}\) returns two nets of univariate lower semialgebraic approximations \((r_p^-)_{p \in \mathcal {P}}\) and upper semialgebraic approximations \((r_p^+)_{p \in \mathcal {P}}\), that uniformly converge to \(r\) on \(I\).

For every semialgebraic function \(f_{\text {sa}}\in \mathcal {A}\), defined on a compact semialgebraic set \(K\), the procedure \(\mathtt {reduce\_lift}\) returns two nets of lower semialgebraic approximations \((t_p^-)_{p \in \mathcal {P}}\) and upper semialgebraic approximations \((t_p^+)_{p \in \mathcal {P}}\), that uniformly converge to \(f_{\text {sa}}\) on \(K\).

Proof

First, suppose that the precision \(p\) is the best uniform polynomial approximation degree. By Assumption 4, the procedure \(\mathtt {unary\_approx}\) returns the sequence of degree-\(d\) minimax polynomials, using the algorithm of Remez. This sequence uniformly converges to \(r\) on \(I\), as a consequence of Jackson’s Theorem [15, Chap. 3]. Alternatively, when considering maxplus approximations in which the precision is determined by certain sets of points, we can apply Theorem 2 that implies the uniform convergence of the maxplus approximations.

Next, for sufficiently large relaxation order, the \(\mathtt {reduce\_lift}\) procedure returns the best (for the \(L_{1}\) norm) degree-\(d\) polynomial under-approximation of a given semialgebraic function, as a consequence of Theorem 3. \(\square \)

1.2 Proof of Lemma 3

Let us equip the vector space \(\mathbb {R}_d[\mathbf {x}]\) of polynomials \(h\) of degree at most \(d\) with the norm \(\Vert h \Vert _{\infty } := \sup _{|\varvec{\alpha }| \leqslant d} \{ |h_{\varvec{\alpha }}| \}\).

Let \(H\) be the admissible set of Problem \((P^{\text {sa}})\). Observe that \(H\) is closed in the topology of the latter norm. Moreover, the objective function of Problem \((P^{\text {sa}})\) can be written as \(\phi : h\in H \mapsto \Vert f_{\text {sa}}- h\Vert _{L_1(K)}\), where \(\Vert \cdot \Vert _{L_1(K)}\) is the norm of the space \(L^1(K,\lambda _n)\). The function \(\phi \) is continuous in the topology of \(\Vert \cdot \Vert _{\infty }\) (for polynomials of bounded degree, the convergence of the coefficients implies the uniform convergence on every bounded set for the associated polynomial functions, and a fortiori the convergence of these polynomial functions in \(L^1(K,\lambda _n)\)). Note also that \(\int _{[0, 1]^n} h\ d \lambda _n= \int _{[0, 1]^n} h(\mathbf {x}) \ d \lambda _n(\mathbf {x}) = \int _{[0, 1]^{n + p}} h(\mathbf {x},\mathbf {z}) \ d \lambda _{n + p}(\mathbf {x},\mathbf {z})\). We claim that for every \(t \in \mathbb {R}\), the sub-level set \(S_t:=\{ h \in H \mid \phi (h) \leqslant t\}\) is bounded. Indeed, when \(\phi (h) \leqslant t\), we have:

$$\begin{aligned} \Vert h\Vert _{L_1(K)} \leqslant \Vert f_{\text {sa}}- h\Vert _{L_1(K)} + \Vert f_{\text {sa}}\Vert _{L_1(K)} \leqslant t +\Vert f_{\text {sa}}\Vert _{L_1(K)}. \end{aligned}$$

Since on a finite dimensional vector space, all the norms are equivalent, there exists a constant \(C>0\) such that \(\Vert h \Vert _{\infty } \leqslant C \Vert h\Vert _{L_1(K)} \) for all \(h\in H\), so we deduce that \(\Vert h \Vert _{\infty }\leqslant C(t + \Vert f_{\text {sa}}\Vert _{L_1(K)})\) for all \(h\in S_t\), which shows the claim. Since \(\phi \) is continuous, it follows that every sublevel set of \(\phi \), which is a closed bounded subset of a finite dimensional vector space, is compact. Hence, the minimum of Problem \((P^{\text {sa}})\) is attained. \(\square \)

1.3 Proof of Proposition 3

The proof is by induction on the structure of \(t\).

  • When \(t\) represents a semialgebraic function of \(\mathcal {A}\), the under-approximation (resp. over-approximation) net \((t_{p}^-)_{p }\) (resp. \((t_{p}^+)_{p}\)) converges uniformly to \(t\) by Proposition 4.

  • The second case occurs when the root of \(t\) is an univariate function \(r \in \mathcal {D}\) with the single child \(c\). Suppose that \(r\) is increasing without loss of generality. We consider the net of under-approximations \((c_p^-)_{p}\) (resp. over-approximations \((c_p^+)_{p}\)) as well as lower and upper bounds \(m_{c_p}\) and \(M_{c_p}\) which are obtained recursively. Since \(K\) is a compact semialgebraic set, one can always find an interval \(I_0\) enclosing the values of \(r_p^+\) (i.e. such that \([m_{c_p}, M_{c_p}] \subset I_0\)), for all \(p\). The induction hypothesis is the uniform convergence of \((c_p^-)_{p}\) (resp. \((c_p^+)_{p}\)) to \(c\) on \(K\). Now, we prove the uniform convergence of \((t_p^+)_{p}\) to \(t\) on \(K\). One has:

    $$\begin{aligned} \Vert t - t_p^+ \Vert _{\infty } \leqslant \Vert r \circ c - r_p^+ \circ c \Vert _{\infty } + \Vert r_p^+ \circ c - t_p^+ \Vert _{\infty }. \end{aligned}$$
    (8.1)

    Let note \(\omega \) the modulus of continuity of \(r_p^+\) on \(I_0\). Thus, the following holds:

    $$\begin{aligned} \Vert r_p^+ \circ c - r_p^+ \circ c_p^+ \Vert _{\infty } \leqslant \omega (\Vert c - c_p^+ \Vert _{\infty }). \end{aligned}$$
    (8.2)

    Let \(\epsilon > 0\) be given. The univariate function \(r_p^+\) is uniformly continuous on \(I_0\), thus there exists \(\delta > 0\) such that \(\omega (\delta ) \leqslant \epsilon / 2\). Let choose such a \(\delta \). By induction hypothesis, there exists a precision \(p_0\) such that for all \(p \geqslant p_0,\,\Vert c - c_p^+ \Vert _{\infty } \leqslant \delta \). Hence, using (8.2), the following holds:

    $$\begin{aligned} \Vert r_p^+ \circ c - r_p^+ \circ c_p^+ \Vert _{\infty } \leqslant \epsilon / 2. \end{aligned}$$
    (8.3)

    Moreover, from the uniform convergence of \((r_p^+)_{p \in \mathbb {N}}\) to \(r\) on \(K\) (by Proposition 4), there exists a precision \(p_1\) such that for all \(p \geqslant p_1\):

    $$\begin{aligned} \Vert r \circ c - r_p^+ \circ c \Vert _{\infty } \leqslant \epsilon / 2. \end{aligned}$$
    (8.4)

    Using (8.1) together with (8.3) and (8.4) yield the desired result. The proof of the uniform convergence of the under-approximations is analogous.

  • If the root of \(t\) is a binary operation whose arguments are two children \(c_1\) and \(c_2\), then by induction hypothesis, we obtain semialgebraic approximations \(c_{1, p}^-,\,c_{2, p}^-,\,c_{1, p}^+,\,c_{2, p}^+\) that verify:

    $$\begin{aligned} \lim _{p \rightarrow \infty } \Vert c_1 - c_{1, p}^- \Vert _{\infty }&= 0, \qquad \quad \lim _{p \rightarrow \infty } \Vert c_1 - c_{1, p}^+ \Vert _{\infty } = 0, \end{aligned}$$
    (8.5)
    $$\begin{aligned} \lim _{p \rightarrow \infty } \Vert c_2 - c_{2, p}^- \Vert _{\infty }&= 0, \qquad \quad \lim _{p \rightarrow \infty } \Vert c_2 - c_{2, p}^+ \Vert _{\infty } = 0. \end{aligned}$$
    (8.6)

    If \(\mathtt {bop}= +\), by using the triangle inequality:

    $$\begin{aligned} \Vert c_1 + c_2 - c_{1, p}^- -c_{2, p}^- \Vert _{\infty } \leqslant \Vert c_1 - c_{1, p}^- \Vert _{\infty } + \Vert c_2 - c_{2, p}^- \Vert _{\infty }, \\ \Vert c_1 + c_2 - c_{1, p}^+ -c_{2, p}^+ \Vert _{\infty } \leqslant \Vert c_1 - c_{1, p}^+ \Vert _{\infty } + \Vert c_2 - c_{2, p}^+ \Vert _{\infty }. \end{aligned}$$

    Then, the uniform convergence comes from (8.5) and (8.6). The proof for the other cases is analogous. \(\square \)

1.4 Convergence of the \(\mathtt {template\_optim}\) algorithm

1.4.1 Preliminaries: \(\varGamma \) and uniform convergence

To study the convergence of the minimizers of \(t_p^-\), we first introduce some background on the \(\varGamma \)-convergence (we refer the reader to [27] for more details) and the lower semicontinuous envelope. The topology of \(\varGamma \)-Convergence is known to be metrizable hence, we shall consider the \(\varGamma \)-Convergence of sequences (rather than nets).

Definition 9

(\(\varGamma \)-Convergence) The sequence \((t_p)_{p \in \mathbb {N}}\varGamma \)-converges to \(t\) if the following two conditions hold:

  1. 1.

    (Asymptotic common lower bound) For all \(\mathbf {x}\in K\) and all \((\mathbf {x}_p)_{p \in \mathbb {N}}\) such that \(\lim _{p \rightarrow \infty } \mathbf {x}_p = \mathbf {x}\), one has \(t(\mathbf {x}) \leqslant \liminf _{p \rightarrow \infty } t_p (\mathbf {x}_p)\).

  2. 2.

    (Existence of recovery sequences) For all \(\mathbf {x}\in K\), there exists some \((\mathbf {x}_p)_{p \in \mathbb {N}}\) such that \(\lim _{p \rightarrow \infty } \mathbf {x}_p = \mathbf {x}\) and \(\limsup _{p \rightarrow \infty } t_p (\mathbf {x}_p) \geqslant t(\mathbf {x})\).

Define \(\overline{\mathbb {R}}:= \mathbb {R}\cup \{-\infty , \infty \}\) to be the extended real number line.

Definition 10

(Lower Semicontinuous Envelope) Given \(t : K \mapsto \overline{\mathbb {R}}\), the lower semicontinuous envelope of \(t\) is defined by:

$$\begin{aligned} t^{\text {lsc}}(\mathbf {x}) := \sup \left\{ g(\mathbf {x}) \mid g : K \mapsto \overline{\mathbb {R}}\text { is lower semicontinuous and } g \leqslant f \text { on } K \right\} . \end{aligned}$$

If \(t\) is continuous, then \(t^{\text {lsc}}:= t\).

Theorem 5

(Fundamental Theorem of \(\varGamma \)-Convergence [27]) Suppose that the sequence \((t_p)_{p \in \mathbb {N}}\) \(\varGamma \)-converges to \(t\) and \(\mathbf {x}_p\) minimizes \(t_p\). Then every limit point of the sequence \((\mathbf {x}_p)_{p \in \mathbb {N}}\) is a global minimizer of \(t\).

Theorem 6

(\(\varGamma \) and Uniform Convergence [27]) If \((t_p)_{p \in \mathbb {N}}\) uniformly converges to \(t\), then \((t_p)_{p \in \mathbb {N}} \ \varGamma \)-converges to \(t^{\text {lsc}}\).

Theorem 6 also holds for nets, since the topology of \(\varGamma \)-Convergence is metrizable.

1.4.2 Proof of Corollary 2

From Proposition 3, the under-approximations net \((t_p^-)_{p \in \mathbb {N}}\) uniformly converge to \(t\) on \(K\). Then, by using Theorem 6, the net \((t_p^-)_{p \in \mathbb {N}}\) \(\varGamma \)-converges to \(t^{\text {lsc}}:= t\) (by continuity of \(t\)). It follows from the fundamental Theorem of \(\varGamma \)-Convergence 5 that every limit point of the net of minimizers \((\mathbf {x}_p^*)_{p \in \mathbb {N}}\) is a global minimizer of \(t\) over \(K\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magron, V., Allamigeon, X., Gaubert, S. et al. Certification of real inequalities: templates and sums of squares. Math. Program. 151, 477–506 (2015). https://doi.org/10.1007/s10107-014-0834-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0834-5

Keywords

Mathematics Subject Classification

Navigation