[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On some dynamic thermal non clamped contact problems

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study a class of dynamic thermal sub-differential contact problems with friction, for long memory visco-elastic materials, without the clamped condition, which can be put into a general model of system defined by a second order evolution inequality, coupled with a first order evolution equation. We present and establish an existence and uniqueness result, by using general results on first order evolution inequality, with monotone operators and fixed point methods. Finally a fully discrete scheme for numerical approximations is provided, and corresponding various numerical computations in dimension two will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adly, S., Ernst, E., Thera, M.: Stability of the solution set of non-coercive variational inequalities. Commun. Contemp. Math. 4, 145–160 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei, Bucharest-Noordhoff, Leyden (1976)

    Book  MATH  Google Scholar 

  3. Brézis, H.: Problèmes unilatéraux. J. Math. Pures et Appli. 51, 1–168 (1972)

    Google Scholar 

  4. Carstensen, C., Gwinner, J.: A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann. Mat. Pura Appl. 177, 363–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chau, O.: Analyse variationnelle et numérique en mécanique du contact. Thesis, Perpignan, June 2000

  6. Ciarlet, P.G.: Mathematical Elasticity, vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    Google Scholar 

  7. Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972)

    MATH  Google Scholar 

  8. Eck, Ch., Jarusek, J., Krbec, M.: Unilateral Contact Problems, Variational Methods and Existence Theorems. Monographs & Texbooks in Pure & Applied Mathematics, vol. 270, Chapman and Hall, London (2005)

  9. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  10. Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities, Theory, Methods and Applications, Volume I: Unilateral Analysis and Unilateral Mechanics. Kluwer, Dordrecht (2003)

    Google Scholar 

  11. Han, W., Sofonea, M.: Evolutionary variational inequalities arising in viscoelastic contact problems. SIAM J. Numer. Anal. 38, 556–579 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lions, J.L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod et Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  13. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  14. Matei, A., Sofonea, M.: Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, vol. 18. Springer, Berlin (2009)

    Google Scholar 

  15. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

    MATH  Google Scholar 

  16. Nečas, J., Hlaváček, I.: Mathematical Theory of Elastic and Elastoplastic Bodies: An Introduction. Elsevier, Amsterdam (1981)

    Google Scholar 

  17. Panagiotopoulos, P.D.: Inequality Problems in Meechanics and Applications. Birkhäuser, Basel (1985)

    Book  Google Scholar 

  18. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  19. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/A, Linear Monotone Operators. Springer, Berlin (1997)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thanks the anonymous referees for many helpful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Adly.

Additional information

Dedicated to Jon Borwein in honor of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adly, S., Chau, O. On some dynamic thermal non clamped contact problems. Math. Program. 139, 5–26 (2013). https://doi.org/10.1007/s10107-013-0657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0657-9

Keywords

Mathematics Subject Classification

Navigation