[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Valid inequalities for MIPs and group polyhedra from approximate liftings

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we present an approximate lifting scheme to derive valid inequalities for general mixed integer programs and for the group problem. This scheme uses superadditive functions as the building block of integer and continuous lifting procedures. It yields a simple derivation of new and known families of cuts that correspond to extreme inequalities for group problems. This new approximate lifting approach is constructive and potentially efficient in computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aráoz J., Evans L., Gomory R.E. and Johnson E.L. (2003). Cyclic group and knapsack facets. Math. Program. 96(2): 377–408

    Article  MATH  MathSciNet  Google Scholar 

  2. Atamtürk A. (2004). Sequence independent lifting for mixed-integer programming. Oper. Res. 52: 487–490

    Article  MathSciNet  MATH  Google Scholar 

  3. Bixby R.E., Fenelon M., Gu Z., Rothberg E. and Wunderling R. (2000). MIP: Theory and practice—closing the gap. In: Powell, M.J.D. and Scholtes, S. (eds) System Modelling and Optimization: Methods, Theory and Applications, pp 19–49. Kluwer, Dordrecht

    Google Scholar 

  4. Bixby R.E., Gu Z., Rothberg E. and Wunderling R. (2004). Mixed integer programming: a progress report. In: Grotschel, M. (eds) The Sharpest Cut: the Impact of Manfred Padberg and His Work, pp 309–326. MPS/SIAM Series on Optimization, SIAM, Philadelphia

    Google Scholar 

  5. Chvátal V. (1973). Edmonds polytopes and a hierarchy of combinatorial problems. Discret. Math. 4: 305–337

    Article  MATH  Google Scholar 

  6. Cornuéjols G., Li Y. and Vandenbussche D. (2003). K-cuts: a variation of Gomory mixed integer cuts from the LP tableau. INFORMS J. Comput. 15: 385–396

    Article  MathSciNet  Google Scholar 

  7. Dash S. and Günlük O. (2006). Valid inequalities based on the interpolation procedure. Math. Program. 106: 111–136

    Article  MATH  MathSciNet  Google Scholar 

  8. Dey, S., Richard, J.-P.P., Li, Y., Miller, L.A.: On the extreme inequalities of infinite group problems. Tech. rep. (2006). http://www.optimization-online.org/DB_HTML/2006/04/1356.html

  9. Evans, L.: Cyclic group and knapsack facets with applications to cutting planes. PhD thesis, School of Industrial and Systems Engineering, Georgia Institute of Technology (2002)

  10. Gomory, R.E.: An algorithm for the mixed integer problem. Tech. Rep. RM-2597, RAND Corporation (1960)

  11. Gomory R.E. (1969). Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2: 451–558

    Article  MATH  MathSciNet  Google Scholar 

  12. Gomory R.E. and Johnson E.L. (1972). Some continuous functions related to corner polyhedra i. Math. Program. 3: 23–85

    Article  MATH  MathSciNet  Google Scholar 

  13. Gomory R.E. and Johnson E.L. (1972). Some continuous functions related to corner polyhedra ii. Math. Program. 3: 359–389

    Article  MATH  MathSciNet  Google Scholar 

  14. Gomory R.E. and Johnson E.L. (2003). T-space and cutting planes. Math. Program. 96(2): 341–375

    Article  MATH  MathSciNet  Google Scholar 

  15. Gomory R.E., Johnson E.L. and Evans L. (2003). Corner polyhedra and their application to cutting planes. Math. Program. 96(2): 321–339

    Article  MATH  MathSciNet  Google Scholar 

  16. Gomory R.E., Johnson E.L. and Evans L. (2003). Corner polyhedra and their connection with cutting planes. Math. Program. 96: 321–339

    Article  MATH  MathSciNet  Google Scholar 

  17. Gu Z., Nemhauser G.L. and Savelsbergh M.W.P. (2000). Sequence independent lifting. J. Comb. Optim. 4: 109–129

    Article  MATH  MathSciNet  Google Scholar 

  18. Johnson E.L. (1974). On the group problem for mixed integer programming. Math. Program. Study 2: 137–179

    Google Scholar 

  19. Miller, L.A., Li, Y., Richard, J.-P.P.: New facets for finite and infinite group problems from approximate lifting. Tech. rep., (2006) http://www.optimization-online.org/DB_HTML/2006/05/1394.html

  20. Padberg M.W. (1973). On the facial structure of set packing polyhedra. Math. Program. 5: 199–215

    Article  MATH  MathSciNet  Google Scholar 

  21. Richard J.-P.P., de Farias I.R. and Nemhauser G.L. (2003). Lifted inequalities for 0-1 mixed integer programming : Basic theory and algorithms. Math. Program. 98: 89–113

    Article  MATH  MathSciNet  Google Scholar 

  22. Richard J.-P.P., de Farias I.R. and Nemhauser G.L. (2003). Lifted inequalities for 0-1 mixed integer programming: superlinear lifting. Math. Program. 98: 115–143

    Article  MATH  MathSciNet  Google Scholar 

  23. Wolsey L.A. (1976). Facets and strong valid inequalities for integer programs. Oper. Res. 24: 367–372

    Article  MATH  MathSciNet  Google Scholar 

  24. Wolsey L.A. (1977). Valid inequalities and superadditivity for 0-1 integer programs. Math. Oper. Res. 2: 66–77

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe P. Richard.

Additional information

J.-P. P. Richard was supported by NSF grant DMI-348611.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, JP.P., Li, Y. & Miller, L.A. Valid inequalities for MIPs and group polyhedra from approximate liftings. Math. Program. 118, 253–277 (2009). https://doi.org/10.1007/s10107-007-0190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0190-9

Keywords

Mathematics Subject Classification (2000)

Navigation