[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Informationally optimal correlation

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

This papers studies an optimization problem under entropy constraints arising from repeated games with signals. We provide general properties of solutions and a full characterization of optimal solutions for 2 × 2 sets of actions. As an application we compute the minmax values of some repeated games with signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumann R.J. and Shapley L.S. (1994). Long-term competition—a game theoretic analysis. In: Megiddo, N (eds) Essays on game theory., pp 1–15. Springer, New-York

    Google Scholar 

  2. Aumann R.J. (1974). Subjectivity and correlation in randomized strategies. J. Math. Econ. 1: 67–95

    Article  MATH  MathSciNet  Google Scholar 

  3. Gossner O., Hernández P. and Neyman A. (2006). Optimal use of communication resources. Econometrica 74: 1603–1636

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldberg, Y.: On the minmax of repeated games with imperfect monitoring: a computational example. In: Discussion Paper Series 345, Center the Study of Rationality, Hebrew University, Jerusalem (2003)

  5. Gossner O. and Tomala T. (2006). Empirical distributions of beliefs under imperfect observation. Math. Oper. Res. 31: 13–30

    MATH  MathSciNet  Google Scholar 

  6. Gossner, O., Tomala, T.: Secret correlation in repeated games with signals. Math. Oper. Res. (2007) (to appear)

  7. Gossner O. and Vieille N. (2002). How to play with a biased coin?. Games Econ. Behav. 41: 206–226

    Article  MATH  MathSciNet  Google Scholar 

  8. Laraki R. (2001). On the regularity of the convexification operator on a compact set. J. Convex Anal. 11(1): 209–234

    MathSciNet  Google Scholar 

  9. Lehrer E. and Smorodinsky R. (2000). Relative entropy in sequential decision problems. J. Math. Econ. 33(4): 425–440

    Article  MATH  MathSciNet  Google Scholar 

  10. Mertens J.-F. and Zamir S. (1981). Incomplete information games with transcendental values. Math. Oper. Res. 6: 313–318

    Article  MATH  MathSciNet  Google Scholar 

  11. Neyman A. and Okada D. (1999). Strategic entropy and complexity in repeated games. Games Econ. Behav. 29: 191–223

    Article  MATH  MathSciNet  Google Scholar 

  12. Neyman A. and Okada D. (2000). Repeated games with bounded entropy. Games and Econ. Behav 30: 228–247

    Article  MATH  MathSciNet  Google Scholar 

  13. Rockafellar R.T. (1970). Convex analysis. Princeton University Press, Princeton

    MATH  Google Scholar 

  14. Renault J. and Tomala T. (1998). Repeated proximity games. Int. J. Game Theor 27: 539–559

    Article  MATH  MathSciNet  Google Scholar 

  15. Sorin S. (1984). “big match” with lack of information on one side. part I. Int. J. Game Theor 13: 201–255

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Tomala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gossner, O., Laraki, R. & Tomala, T. Informationally optimal correlation. Math. Program. 116, 147–172 (2009). https://doi.org/10.1007/s10107-007-0129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0129-1

Keywords

Mathematics Subject Classification (2000)

Navigation