[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Necessary optimality conditions for constrained optimization problems under relaxed constraint qualifications

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We derive first- and second-order necessary optimality conditions for set-constrained optimization problems under the constraint qualification-type conditions significantly weaker than Robinson’s constraint qualification. Our development relies on the so-called 2-regularity concept, and unifies and extends the previous studies based on this concept. Specifically, in our setting constraints are given by an inclusion, with an arbitrary closed convex set on the right-hand side. Thus, for the second-order analysis, some curvature characterizations of this set near the reference point must be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arutyunov A.V. (2005). Covering of nonlinear maps on cone in neighborhood of abnormal point. Math. Notes 77: 447–460

    Article  MATH  MathSciNet  Google Scholar 

  2. Arutyunov A.V. (2000). Optimality Conditions: Abnormal and Degenerate Problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  3. Arutyunov A.V. (1998). Second-order conditions in extremal problems. The abnormal points. Trans. Amer. Math. Soc. 350: 4341–4365

    Article  MATH  MathSciNet  Google Scholar 

  4. Arutyunov A.V. and Izmailov A.F. (2004). Tangent vectors to a zero set at abnormal points. J. Math. Anal. Appl. 289: 66–76

    Article  MATH  MathSciNet  Google Scholar 

  5. Aubin J.-P. and Ekeland I. (1988). Applied Nonlinear Analysis. Wiley, New York

    Google Scholar 

  6. Avakov E.R. (1985). Extremum conditions for smooth problems with equality-type constraints. USSR Comput. Math. Math. Phys. 25: 24–32

    Article  MATH  MathSciNet  Google Scholar 

  7. Avakov E.R. (1990). Necessary conditions for a minimum for nonregular problems in Banach spaces. The maximum principle for abnormal optimal control problems. Proc. Steklov Instit. Math. 185: 1–32

    MATH  Google Scholar 

  8. Avakov E.R. (1989). Necessary extremum conditions for smooth abnormal problems with equality- and inequality constraints. Math. Notes 45: 431–437

    MATH  MathSciNet  Google Scholar 

  9. Avakov E.R. (1991). Necessary first-order conditions for abnormal for abnormal variational calculus problems (in Russian). Differ. Equat. 27: 739–745

    MathSciNet  Google Scholar 

  10. Avakov E.R. (1990). Theorems on estimates in the neighborhood of a singular point of a mapping. Math. Notes 47: 425–432

    MATH  MathSciNet  Google Scholar 

  11. Avakov E.R. and Arutyunov A.V. (2004). Abnormal problems with a nonclosed image. Doklady Math. 70: 924–927

    Google Scholar 

  12. Bliss G.A. (1946). Lectures on the Calculus of Variations. University of Chicago Press, Chicago

    MATH  Google Scholar 

  13. Bonnans J.F. and Shapiro A. (2000). Perturbation Analysis of Optimization Problems. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  14. Girsanov I.V. (1970). Lectures on Mathematical Theory of Extremum Problems (in Russian). Moscow State University, Moscow

    Google Scholar 

  15. Izmailov A.F. (1994). Optimality conditions for degenerate extremum problems with inequality type constraints. Comput. Math. Math. Phys. 34: 723–736

    MATH  MathSciNet  Google Scholar 

  16. Izmailov A.F. (1999). Optimality conditions in extremal problems with nonregular inequality constraints. Math. Notes 66: 72–81

    Article  MATH  MathSciNet  Google Scholar 

  17. Izmailov A.F. and Solodov M.V. (2001). Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications. Math. Program. 89: 413–435

    Article  MATH  MathSciNet  Google Scholar 

  18. Izmailov A.F. and Solodov M.V. (2001). Optimality conditions for irregular inequality-constrained problems. SIAM J. Control. Optim. 40: 1280–1295

    Article  MATH  MathSciNet  Google Scholar 

  19. Izmailov A.F. and Solodov M.V. (2002). The theory of 2-regularity for mappings with Lipschitzian derivatives and its applications to optimality conditions. Math. Oper. Res. 27: 614–635

    Article  MATH  MathSciNet  Google Scholar 

  20. Izmailov A.F. and Tretyakov A.A. (1994). Factor-Analysis of Nonlinear Mappings (in Russian). Nauka, Moscow

    Google Scholar 

  21. Izmailov A.F. and Tretyakov A.A. (1999). 2-Regular Solutions of Nonlinear Problems. Theory and Numerical Methods (in Russian). Fizmatlit, Moscow

    Google Scholar 

  22. Ledzewicz U. and Schättler H. (1998). High-order approximations and generalized necessary conditions for optimality. SIAM J. Control Optim. 37: 33–53

    Article  Google Scholar 

  23. Magnus R.J. (1976). On the local structure of the zero-set of a Banach space valued mapping. J. Func. Anal. 22: 58–72

    Article  MATH  MathSciNet  Google Scholar 

  24. Milyutin, A.A.: Quadratic conditions for an extremum in smooth problems with a finite-dimensional image. In: Methods of the Theory of Extermal Problems in Economics (in Russian), pp. 138–177. Nauka, Moscow (1981)

  25. Penot J.-P. (1994). Optimality conditions in mathematical programming and composite optimization. Math. Program. 67: 225–245

    Article  MathSciNet  Google Scholar 

  26. Szulkin A. (1979). Local structure of the zero-sets of differentiable mappings and applications to bifurcation theory. Math. Scand. 45: 232–242

    MATH  MathSciNet  Google Scholar 

  27. Tretyakov A.A. (1984). Necessary and sufficient conditions for optimality of p-th order. USSR Comput. Math. Math. Phys. 24: 123–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Izmailov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arutyunov, A.V., Avakov, E.R. & Izmailov, A.F. Necessary optimality conditions for constrained optimization problems under relaxed constraint qualifications. Math. Program. 114, 37–68 (2008). https://doi.org/10.1007/s10107-006-0082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0082-4

Keywords

Mathematics Subject Classification (2000)

Navigation