[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Generalized pattern searches with derivative information

  • Published:
Mathematical Programming Submit manuscript

Abstract.

A common question asked by users of direct search algorithms is how to use derivative information at iterates where it is available. This paper addresses that question with respect to Generalized Pattern Search (GPS) methods for unconstrained and linearly constrained optimization. Specifically, this paper concentrates on the GPS pollstep. Polling is done to certify the need to refine the current mesh, and it requires O(n) function evaluations in the worst case. We show that the use of derivative information significantly reduces the maximum number of function evaluations necessary for pollsteps, even to a worst case of a single function evaluation with certain algorithmic choices given here. Furthermore, we show that rather rough approximations to the gradient are sufficient to reduce the pollstep to a single function evaluation. We prove that using these less expensive pollsteps does not weaken the known convergence properties of the method, all of which depend only on the pollstep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramson, M.A.: Mixed variable optimization of a load-bearing thermal insulation system. Technical Report TR02-13, Department of Computational and Applied Mathematics, Rice University, Houston Texas, 2002. To appear in Optim. Eng.

  2. Abramson, M.A.: Nonlinear optimization with mixed variables and derivatives – Matlab © (NOMADm). Software. Available for download at http://en.afit.edu/ENC/Faculty/MAbramson/abramson.html, 2002

  3. Abramson, M.A.: Pattern search algorithms for mixed variable general constrained optimization problems. PhD thesis, Rice University, Department of Computational and Applied Mathematics, Houston, Texas, 2002. Also appears as CAAM Technical Report TR-02-11

  4. Alexandrov, N., Dennis, J.E. Jr., Lewis, R., Torczon, V.: A trust region framework for managing the use of approximation models in optimization. Struct. Optim. 15, 16–23 (1998)

    Google Scholar 

  5. Audet, C.: Convergence results for pattern search algorithms are tight, Technical Report G-2002-56, Les Cahiers du GERAD, Montréal, Canada, 2002. To appear in Optim. Eng.

  6. Audet, C., Dennis, J.E. Jr.: Pattern search algorithms for mixed variable programming. SIAM J. Optim. 11, 573–594 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Audet, C., Dennis, J.E. Jr.: A pattern search filter method for nonlinear programming without derivatives. Technical Report TR00-09, Department of Computational and Applied Mathematics. Rice University, Houston Texas, (2000)

  8. Audet, C., Dennis, J.E. Jr.: Analysis of generalized pattern searches. SIAM J. Optim. 13, 889–903 (2003)

    MATH  Google Scholar 

  9. Bongartz, I., Conn, A.R., Gould, N., Toint, Ph.L.: CUTE: Constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 123–160 (1995)

    Article  MATH  Google Scholar 

  10. Booker, A.J., Dennis, J.E. Jr., Frank, P.D., Serafini, D.B., Torczon, V., Trosset M.W.: A rigorous framework for optimization of expensive functions by surrogates. Struct. Optim. 17, 1–13 (1999)

    Article  Google Scholar 

  11. Booker, A.J., Dennis, J.E. Jr., Frank, P.D., Moore, D.W., Serafini, D.B.: Managing surrogate objectives to optimize a helicopter rotor design – further experiment., AIAA Paper 98-4717, St. Louis, September 1998 (1999)

  12. Byrd, R.H., Tapia R.A.: An extension of Curry’s theorem to steepest descent in normed linear spaces. Math. Program. 9, 247–254 (1975)

    MATH  Google Scholar 

  13. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM Classics in Applied Mathematics, Vol. 5, Philadelphia, 1990

  14. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545–572 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Davis, C.: Theory of positive linear dependence. Am. J. Math. 76, 733–746 (1954)

    MathSciNet  MATH  Google Scholar 

  16. Dennis, J.E. Jr., Torczon, V.: Direct search methods on parallel machines. SIAM J. Optim. 1, 448–474 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)

    Article  MathSciNet  Google Scholar 

  18. Fletcher, R, Leyffer, S., Toint, Ph.L.: On the global convergence of an SLP-filter algorithm, Report NA/183, Dundee University, Dept. of Mathematics, 1998

  19. Fletcher, R, Gould, N.I.M., Leyffer, S., Toint, Ph.L.: On the global convergence of trust-region SQP-filter algorithms for general nonlinear programming, Report 99/03, Department of Mathematics, FUNDP, Namur (B), 1999

  20. Kokkolaras, M., Audet, C., Dennis, J.E. Jr.: Mixed variable optimization of the number and composition of heat intercepts in a thermal insulation system. Optim. Eng. 2, 5–29 (2001)

    Article  MATH  Google Scholar 

  21. Lewis, R.M., Torczon V.: Rank ordering and positive basis in pattern search algorithms. Technical Report TR-96-71, ICASE NASA Langley Research Center, 1996

  22. Lewis, R.M., Torczon, V.: A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds. SIAM J. Optim. 12, 1075–1089 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J. Optim. 9, 1082–1099 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lewis, R.M., Torczon, V.: Pattern search methods for linearly constrained minimization. SIAM J. Optim. 10, 917–941 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. McKay, M.D., Conover, W.J., Beckman, R.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

    MathSciNet  MATH  Google Scholar 

  26. Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Oxford University Press, Oxford, 2001

  27. Soto, O., Löhner, R.: CFD optimization using an incomplete–gradient adjoint formulation. Int. J. Num. Meth. Eng. 51, 735–753 (2001)

    Article  MATH  Google Scholar 

  28. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 143–151 (1987)

    MathSciNet  MATH  Google Scholar 

  29. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7, 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Abramson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramson, M., Audet, C. & Dennis, J. Generalized pattern searches with derivative information. Math. Program., Ser. B 100, 3–25 (2004). https://doi.org/10.1007/s10107-003-0484-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0484-5

Navigation