[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Proximity theorems of discrete convex functions

  • Published:
Mathematical Programming Submit manuscript

Abstract.

A proximity theorem is a statement that, given an optimization problem and its relaxation, an optimal solution to the original problem exists in a certain neighborhood of a solution to the relaxation. Proximity theorems have been used successfully, for example, in designing efficient algorithms for discrete resource allocation problems. After reviewing the recent results for L-convex and M-convex functions, this paper establishes proximity theorems for larger classes of discrete convex functions, L2-convex functions and M2-convex functions, that are relevant to the polymatroid intersection problem and the submodular flow problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldick, R.: Refined proximity and sensitivity results in linearly constrained convex separable integer programming. Linear Algebra Appl. 226/228, 389–407 (1995)

    Google Scholar 

  2. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34, 251–264 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. Ann. Discrete Math. 1, 185–204 (1977)

    MATH  Google Scholar 

  4. Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ricerca Operativa 53, 3–44 (1990)

    Google Scholar 

  5. Fujishige, S.: Submodular Functions and Optimization. Annals of Discrete Mathematics 47, North-Holland, Amsterdam, 1991

  6. Fujishige, S., Katoh, N., Ichimori, T.: The fair resource allocation problem with submodular constraints. Math. Oper. Res. 13, 164–173 (1988)

    MathSciNet  MATH  Google Scholar 

  7. Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Math. Program. 88, 129–146 (2000)

    Article  MathSciNet  Google Scholar 

  8. Granot, F., Skorin-Kapov, J.: Some proximity and sensitivity results in quadratic integer programming. Math. Program. 47, 259–268 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Hochbaum, D.S.: Lower and upper bounds for the allocation problem and other nonlinear optimization problems. Math. Oper. Res. 19, 390–409 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Hochbaum, D.S., Shanthikumar, J.G.: Convex separable optimization is not much harder than linear optimization. J. Assoc. Comput. Mach. 37, 843–862 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. The MIT Press, Cambridge, 1988

  12. Ibaraki, T., Katoh, N.: Resource Allocation Problems. In: Du D.-Z., Pardalos P. M. (eds), Handbook of Combinatorial Optimization (Vol. 2), pp. 159–260. Kluwer Academic Publishers, Boston, 1998

  13. Iwata, S.: Oral presentation at Workshop on Matroids, Matching, and Extensions. University of Waterloo, December, 1999

  14. Iwata, S.: A fully combinatorial algorithm for submodular function minimization. J. Combin. Theory Ser. B 84, 203–212 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. Assoc. Comput. Mach. 48, 761–777 (2001)

    Article  Google Scholar 

  16. Iwata, S., Shigeno, M.: Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization. SIAM J. Optim. 13, 204–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moriguchi, S., Murota, K., Shioura, A.: Scaling algorithms for M-convex function minimization. IEICE Trans. Fundamentals, E85-A, 922–929 (2002)

    Google Scholar 

  18. Moriguchi, S., Shioura, A.: On Hochbaum’s scaling algorithm for the general resource allocation problem. Research Report B-377, Tokyo Institute of Technology, 2002

  19. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998)

    Article  MathSciNet  Google Scholar 

  21. Murota, K.: Submodular flow problem with a nonseparable cost function. Combinatorica 19, 87–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murota, K.: Matrices and Matroids for Systems Analysis. Springer-Verlag, Berlin, 2000

  23. Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia, 2003

  24. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Murota, K., Shioura, A.: Relationship of M-/L-convex functions with discrete convex functions by Miller and by Favati–Tardella. Discrete Appl. Math. 115, 151–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murota, K., Shioura, A.: Quasi M-convex and L-convex functions: Quasi-convexity in discrete optimization. Discrete Appl. Math. To appear

  27. Murota, K., Tamura, A.: Proximity theorems of discrete convex functions. RIMS Preprint 1358, Kyoto University, 2002

  28. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Combin. Theory Ser. B 80, 346–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shioura, A.: Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem. Discrete Appl. Math. To appear

  30. Tamura, A.: Coordinatewise domain scaling algorithm for M-convex function minimization. In: Cook W.J., Schulz A.S. (eds), Proceedings of the Ninth Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science Vol. 2337, pp. 21–35. Springer-Verlag, Berlin, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Tamura.

Additional information

Mathematics Subject Classification (2000): 90C27, 05B35

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murota, K., Tamura, A. Proximity theorems of discrete convex functions. Math. Program., Ser. A 99, 539–562 (2004). https://doi.org/10.1007/s10107-003-0466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0466-7

Key words

Navigation