[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Safe bounds in linear and mixed-integer linear programming

  • Published:
Mathematical Programming Submit manuscript

Abstract.

Current mixed-integer linear programming solvers are based on linear programming routines that use floating-point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. An example is given where many state-of-the-art MILP solvers fail. It is then shown how, using directed rounding and interval arithmetic, cheap pre- and postprocessing of the linear programs arising in a branch-and-cut framework can guarantee that no solution is lost, at least for mixed-integer programs in which all variables can be bounded rigorously by bounds of reasonable size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brearley, A.L., Mitra, G., Williams, H.P.: An analysis of mathematical programming problems prior to applying the simplex method. Math. Programming 8, 54–83 (1975)

    MATH  Google Scholar 

  2. Ceria, S., Cornuejols, G., Dawande, M.: Combining and strengthening Gomory cuts. In: Integer Programming and Combinatorial Optimization, E. Balas, J. Clausen (eds.), Springer, Berlin, 1995, pp. 438–451

  3. Czyzyk, J., Mesnier, M.,Moré, J.: The NEOS Server. IEEE J. Comput. Sci. Eng. 5, 68–75 (1998). http://www-neos.mcs.anl.gov/neos/

    Article  Google Scholar 

  4. COCONUT, COntinuous CONstraints - Updating the Technology. http://www.mat.univie.ac.at/∼neum/glopt/coconut/

  5. Fourer, R., Gay, D.M.: Experience with a primal presolve algorithm. In: Large Scale Optimization: State of the Art, W.W. Hager, D.W. Hearn, P.M. Pardalos (eds.), Kluwer, Dordrecht, 1994, pp. 135–154

  6. Gropp, W., Moré, J.: Optimization Environments and the NEOS Server. In: Approximation Theory and Optimization, M.D. Buhmann, A. Iserles (eds.), Cambridge University Press, Cambridge, 1997, pp. 167–182

  7. ILOG CPLEX 7.1 User’s manual, ILOG, France 2001

  8. Jansson, C.: Zur linearen Optimierung mit unscharfen Daten. Dissertation, Fachbereich Mathematik. Universität Kaiserslautern (1985)

  9. Jansson, C.: Rigorous lower and upper bounds in linear programming. Manuscript, 2002

  10. Jansson, C., Rump, S.M.: Rigorous solution of linear programming problems with uncertain data. ZOR – Methods and Models of Operations Research 35, 87–111 (1991)

    MATH  Google Scholar 

  11. Krawczyk, R.: Fehlerabschätzung bei linearer Optimierung. In: Interval Mathematics, K. Nickel (ed.), lecture Notes in Computer Science 29, Springer, Berlin, 1975, pp. 215–222

  12. Lagarias, J.C.: Bounds for local density of sphere packings and the Kepler conjecture. Discrete Comput. Geom. 27, 165–193 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to solve MIPs. Operations research 49, 363–371 (2001). http://www.core.ucl.ac.be/wolsey/mir.ps

    Article  MathSciNet  Google Scholar 

  14. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia 1981

  15. Netlib Linear Programming Library. http://www.netlib.org/lp

  16. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge 1990

  17. Neumaier, A.: Introduction to Numerical Analysis. Cambridge Univ. Press, Cambridge 2001

  18. Neumaier, A.: A simple derivation of the Hansen-Bliek-Rohn-Ning-Kearfott enclosure for linear interval equations. Reliable Computing 5, 131–136 (1999), Erratum. Reliable Computing 6, 227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ordóñez, F., Freund, R.M.: Computational experience and the explanatory value of condition numbers for linear optimization. MIT Operations Research Center Working paper # OR361-02, submitted to SIAM J. Optimization. http://web.mit.edu/rfreund/www/CVfreund.pdf

  20. Rump, S.M.: Verification methods for dense and sparse systems of equations. In: J. Herzberger (ed.), Topics in Validated Computations - Studies in Computational Mathematics, Elsevier, Amsterdam, 1994, pp. 63–136

  21. Walster, W.: Interval Arithmetic Solves Nonlinear Problems While Providing Guaranteed Results. FORTE TOOLS Feature Stories, WWW-Manuscript, 2001 http://www.sun.com/forte/info/features/intervals.html

  22. Wolsey, L.A.: Integer Programming. Wiley, 1998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Neumaier.

Additional information

Mathematics Subject Classification (2000): primary 90C11, secondary 65G20

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumaier, A., Shcherbina, O. Safe bounds in linear and mixed-integer linear programming. Math. Program., Ser. A 99, 283–296 (2004). https://doi.org/10.1007/s10107-003-0433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0433-3

Keywords

Navigation