Abstract
The Cambodia-Mekong River Delta Aquifer, a vital transboundary aquifer in the Lower Mekong Region of Southeast Asia, faces escalating challenges due to excessive groundwater extraction for agriculture and domestic purposes. In response, this study utilizes the Gravity Recovery and Climate Experiment (GRACE) satellite estimates, combined with land-surface-model and remote-sensing datasets to estimate groundwater storage anomalies (GWSA) across the aquifer where traditional monitoring is limited. The study further evaluates the consistency of GRACE-derived data in comparison to both localized in situ measurements and a global-scale hydrological model. Additionally, the spatio-temporal trends in groundwater depletion over a 14-year span (2003–2016) were mapped. The results reveal a good agreement between GRACE-derived GWSA, PC-Raster Global Water Balance (PCR-GLOBWB) model outputs, and observed in situ measurements, thereby underscoring the pivotal role of satellite observations in comprehensively assessing groundwater resources within the aquifer. The findings expose a concerning downward trend, with groundwater storage declining at a rate of ~0.68 cm/year, resulting in a total volume loss of 18.28 km3 over the 14-year span. Notably, the depletion rate is higher in the coastal regions of the Mekong Delta and certain areas within the Tonle Sap Basin. Discrepancies between GRACE and observed GWSA are attributed to multiple factors, including the absence of local signals, intricate hydrogeological dynamics, limitations in specific yield and storage estimations, and the uneven distribution of monitoring wells in the region. This research emphasizes the potential of GRACE estimates to supplement in situ observations on a regional scale, establishing a critical foundation for transboundary groundwater management strategies.
Résumé
L’Aquifère du Delta du Fleuve Mékong-Cambodge, un aquifère transfrontalier essentiel de la Région du bas Mékong, en Asie du Sud Est, fait face à des défis croissants liés à l’exploitation excessive des eaux souterraines pour les besoins agricoles et domestiques. Pour y répondre, cette étude utilise les estimations du satellite Gravity Recovery and Climate Experiment (GRACE), en combinaison avec le modèle de surface terrestre et les bases de données de télédétection, pour évaluer les anomalies du stockage des eaux souterraines (ASES) au sein de l’aquifère, où le suivi traditionnel est limité. L’étude évalue ensuite la cohérence des données dérivées de GRACE avec à la fois les mesures in situ locales et un modèle hydrologique à l’échelle mondiale. En outre, les tendances spatio-temporelles de la baisse des eaux souterraines sur une durée de 14 années (2003–2016) ont été cartographiées. Les résultats révèlent une bonne concordance entre les ASES dérivées de GRACE et GRACE, les sorties du modèle global de bilan hydrique au format (PCR-GLOBWB) et les mesures de terrain observées, soulignant ainsi le rôle central des observations satellitaires dans l’évaluation globale des ressources en eaux souterraines de l’aquifère. Les résultats montrent une tendance à la baisse en relation avec la diminution de la réserve des eaux souterraines à un rythme de 0.68 cm/an environ, aboutissant à une perte totale de volume de 18.28 km³ en 14 ans. Notamment, le taux de baisse est plus important dans les régions côtières du Delta du Mékong et certains secteurs du Bassin du Tonlé Sap. Les discordances entre GRACE et les AESE observées sont attribuées à des facteurs multiples, incluant l’absence de signaux locaux, des dynamiques hydrogéologiques complexes, les limites de l’estimation du coefficient d’emmagasinement et du stockage et la distribution inégale des puits de suivi dans la région. Cette recherche souligne le potentiel des estimations de GRACE pour compléter les observations in situ à l’échelle régionale, établissant ainsi une base essentielle des stratégies de gestion des eaux souterraines transfrontalières.
Resumen
El acuífero del delta del río Camboya-Mekong, un acuífero transfronterizo de importancia fundamental en la región del bajo Mekong, en el sudeste asiático, se enfrenta a desafíos cada vez mayores debido a la extracción excesiva de aguas subterráneas con fines agrícolas y domésticos. En este estudio se utilizan las estimaciones del Gravity Recovery and Climate Experiment (GRACE) captadas por satélite, combinadas con modelos de la superficie terrestre y conjuntos de datos de teledetección, para estimar las anomalías en el almacenamiento de aguas subterráneas (GWSA) en el acuífero, donde el monitoreo tradicional es limitado. El estudio evalúa además la consistencia de los datos derivados de GRACE en comparación con mediciones in situ localizadas y con un modelo hidrológico a escala global. Además, se cartografiaron las tendencias espaciotemporales en el agotamiento de las aguas subterráneas durante un período de 14 años (2003–2016). Los resultados revelan una buena concordancia entre la GWSA derivada de GRACE, los resultados del modelo PC-Raster Global Water Balance (PCR-GLOBWB) y las mediciones in situ observadas, subrayando así el papel fundamental de las observaciones por satélite en la evaluación exhaustiva de los recursos de aguas subterráneas dentro del acuífero. Los resultados muestran una preocupante tendencia a la baja, con una disminución del almacenamiento de aguas subterráneas a un ritmo de aproximadamente 0.68 cm/año, lo que supone una pérdida total de volumen de 18.28 km³ en un periodo de 14 años. En particular, la tasa de agotamiento es mayor en las regiones costeras del delta del Mekong y en algunas zonas de la cuenca del Tonle Sap. Las discrepancias entre GRACE y la GWSA observada se atribuyen a múltiples factores, como la ausencia de señales locales, la intrincada dinámica hidrogeológica, las limitaciones en las estimaciones específicas de rendimiento y almacenamiento, y la desigual distribución de los pozos de monitoreo en la región. Esta investigación destaca el potencial de las estimaciones GRACE para complementar las observaciones in situ a escala regional, estableciendo una base crítica para las estrategias de gestión de las aguas subterráneas transfronterizas.
摘要
柬埔寨湄公河三角洲含水层是位于东南亚湄公河下游地区的极其重要的跨境含水层,目前受到农业和家庭地下水过度开采的影响正面临不断升级的挑战。为应对这一情况,本研究利用“重力恢复与气候实验”(GRACE)卫星估算数据,结合陆面模型和遥感数据,估算了传统监测无法观测的含水层中地下水储量变化异常(GWSA)。本研究进一步评估了GRACE反演的数据与局部原位测量和全球尺度水文模型的一致性。此外,还绘制了14年间(2003–2016)地下水消耗的时空趋势图。结果显示,GRACE反演的GWSA、PC-Raster全球水平衡(PCR-GLOBWB)模型输出和观测的原位测量之间存在良好的一致性,强调了卫星观测在全面评估含水层内地下水资源方面的关键作用。研究结果揭示了一个令人担忧的下降趋势,地下水储存以每年约0.68 cm的速度下降,导致在14年内总共损失了18.28 km3的水量。值得注意的是,在湄公河三角洲沿海地区和Tonle Sap流域的某些地区,地下水衰减速率较高。GRACE与观测的GWSA之间的差异归因于多种因素,包括地方信号的缺失、复杂的水文地质动态、安全开采量和储量估算的局限,以及该地区监测井的不均匀分布。这项研究强调了GRACE估算在区域尺度上补充原位观测的潜力,为跨境地下水管理策略奠定了重要基础。
Resumo
O Aquífero do Delta do Rio Camboja-Mekong, um aquífero transfronteiriço vital na região do Baixo Mekong, no Sudeste Asiático, enfrenta desafios crescentes devido à extração excessiva de água subterrânea para fins agrícolas e domésticos. Em resposta, este estudo utiliza as estimativas do Experimento de Recuperação de Dados Gravitacionais e Climáticos (GRACE), combinadas com modelos de superfície terrestre e conjuntos de dados de sensoriamento remoto para estimar as anomalias de armazenamento de água subterrânea (AAAS) em todo o aquífero, onde o monitoramento tradicional é limitado. O estudo avalia ainda a consistência dos dados derivados do GRACE em comparação com as medições localizadas no local e um modelo hidrológico em escala global. Além disso, foram mapeadas as tendências espaço-temporais do esgotamento das águas subterrâneas em um período de 14 anos (2003-2016). Os resultados revelam uma boa concordância entre a AAAS derivada do GRACE, os resultados do modelo PC-Raster Global Water Balance (PRC-GLOBWB) e as medições in situ observadas, ressaltando assim o papel fundamental das observações de satélite na avaliação abrangente dos recursos hídricos subterrâneos dentro de aquífero. As descobertas expõem uma tendência preocupante de queda, com o armazenamento de água subterrânea diminuindo a uma taxa de aproximadamente 0.68 cm/ano, resultando em uma perda de volume total de 18.28 km³ no período de 14 anos. Notavelmente, a taxa de esgotamento é maior nas regiões costeiros do Delta do Mekong e em determinadas áreas da Bacia de Tonle Sap. As discrepâncias entre o GRACE e as AAAS observadas são atribuídas a vários fatores, incluindo a ausência de sinais locais, a intrincada dinâmica hidrogeológica, as limitações nas estimativas específicas de produção e armazenamento e a distribuição desigual dos poços de monitoramento na região. Essa pesquisa enfatiza o potencial das estimativas do GRACE para complementar as observações in situ em escala regional, estabelecendo uma base fundamental para estratégias de gerenciamento de águas subterrâneas transfronteiriças.
Similar content being viewed by others
References
Akhtar F, Nawaz RA, Hafeez M, Awan UK, Borgemeister C, Tischbein B (2022) Evaluation of GRACE derived groundwater storage changes in different agro-ecological zones of the Indus Basin. J Hydrol 605:127369. https://doi.org/10.1016/j.jhydrol.2021.127369
Ali S, Wang Q, Liu D, Fu Q, Mafuzur Rahaman M, Abrar Faiz M, Cheema JM, M. (2022) Estimation of spatio-temporal groundwater storage variations in the Lower Transboundary Indus Basin using GRACE satellite. J Hydrol 605:127315. https://doi.org/10.1016/j.jhydrol.2021.127315
Ashraf B, AghaKouchak A, Alizadeh A, Mousavi Baygi M, Moftakhari R, et al (2017) Quantifying anthropogenic stress on groundwater resources. Sci Rep 7(1):12910. https://doi.org/10.1038/s41598-017-12877-4
Benger SN (2009) Remote sensing of the ecology and functioning of the Mekong River Basinmekong river basin with special reference to the Tonle Sap. IntechOpen. https://doi.org/10.5772/8296
Bhanja SN, Mukherjee A, Saha D, Velicogna I, Famiglietti JS (2016) Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J Hydrol 543:729–738. https://doi.org/10.1016/j.jhydrol.2016.10.042
Bhanja SN, Zhang X, Wang J (2018) Estimating long-term groundwater storage and its controlling factors in Alberta, Canada. Hydrol Earth Syst Sci 22(12):6241–6255. https://doi.org/10.5194/hess-22-6241-2018
Burnett WC, Wattayakorn G, Supcharoen R, Sioudom K, Kum V, Chanyotha S, Kritsananuwat R (2017) Groundwater discharge and phosphorus dynamics in a flood-pulse system: Tonle Sap Lake, Cambodia. J Hydrol 549:79–91. https://doi.org/10.1016/j.jhydrol.2017.03.049
Chao N, Jin T, Cai Z, Chen G, Liu X, Wang Z, Yeh PJ-F (2021) Estimation of component contributions to total terrestrial water storage change in the Yangtze river basin. J Hydrol 595:125661. https://doi.org/10.1016/j.jhydrol.2020.125661
Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4. https://doi.org/10.1038/nclimate2425
Frappart F (2020) Groundwater storage changes in the Major North African Transboundary Aquifer Systems during the GRACE Era (2003–2016). Water 12(10). https://doi.org/10.3390/w12102669
Frappart F, Minh K, Do L’HJ, Cazenave A, Ramillien G, Le Toan T, Mognard-Campbell N (2006) Water volume change in the lower Mekong from satellite altimetry and imagery data. Geophys J Int 167(2):570–584. https://doi.org/10.1111/j.1365-246X.2006.03184.x
Frappart F, Biancamaria S, Normandin C, Blarel F, Bourrel L, Aumont M, Azemar P, Vu P-L, Le Toan T, Lubac B, Darrozes J (2018) Influence of recent climatic events on the surface water storage of the Tonle Sap Lake. Sci Total Environ 636:1520–1533. https://doi.org/10.1016/j.scitotenv.2018.04.326
Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410):197–200. https://doi.org/10.1038/nature11295
Guo Y, Gan F, Yan B, Bai J, Wang F, Jiang R, Xing N, Liu Q (2022) Evaluation of groundwater storage depletion using GRACE/GRACE Follow-On data with land surface models and its driving factors in Haihe River Basin, China. Sustainability. https://doi.org/10.3390/su14031108
Hamer T, Dieperink C, Otter HS, Hoekstra P (2019) The rationality of groundwater governance in the Vietnamese Mekong Delta’s coastal zone. Int J Water Resour Dev. https://doi.org/10.1080/07900627.2019.1618247
Huang J, Pavlic G, Rivera A, Palombi D, Smerdon B (2016) Mapping groundwater storage variations with GRACE: a case study in Alberta, Canada. Hydrogeol J 24(7):1663–1680. https://doi.org/10.1007/s10040-016-1412-0
IGRAC (2015) Transboundary Waters Assessment Programme: transboundary aquifer information sheet AS89—Cambodia Mekong River Delta Aquifer. https://ggis.un-igrac.org/documents/1759/download. Accessed Oct 2023
IGRAC (2021) The Global Groundwater Information System. https://ggis.un-igrac.org/view/tba/. Accessed Oct 2023
Jing W, Zhao X, Yao L, Jiang H, Xu J, Yang J, Li Y (2020) Variations in terrestrial water storage in the Lancang-Mekong river basin from GRACE solutions and land surface model. J Hydrol 580:124258. https://doi.org/10.1016/j.jhydrol.2019.124258
Johnson AI (1967) Specific yield: compilation of specific yields for various materials. US Geol Surv Water Suppl Pap 1662-D
Joodaki G, Wahr J, Swenson S (2014) Estimating the human contribution to groundwater depletion in the Middle East, from GRACE data, land surface models, and well observations. Water Resour Res 50(3):2679–2692. https://doi.org/10.1002/2013WR014633
KC S, Shrestha S, Nguyen TPL, Das Gupta A, Mohanasundaram S (2022) Groundwater governance: a review of the assessment methodologies. Environ Rev 30(2):202–216
Kendall M (1948) Rank correlation methods. Griffin, London
Kummu M, Tes S, Yin S, Adamson P, Józsa J, Koponen J, Richey J, Sarkkula J (2014) Water balance analysis for the Tonle Sap Lake–floodplain system. Hydrol Process 28(4):1722–1733. https://doi.org/10.1002/hyp.9718
Landerer FW, Flechtner FM, Save H, Webb FH, Bandikova T, Bertiger WI et al (2020) Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys Res Lett 47(12):e2020GL088306. https://doi.org/10.1029/2020GL088306
Le Duy N, Nguyen TVK, Nguyen DV, Tran AT, Nguyen HT, Heidbüchel I, Merz B, Apel H (2021) Groundwater dynamics in the Vietnamese Mekong Delta: trends, memory effects, and response times. J Hydrol: Region Stud 33:100746. https://doi.org/10.1016/j.ejrh.2020.100746
Lee E, Jayakumar R, Shrestha S, Han Z (2018) Assessment of transboundary aquifer resources in Asia: status and progress towards sustainable groundwater management. J Hydrol: Region Stud 20:103–115. https://doi.org/10.1016/j.ejrh.2018.01.004
Long D, Chen X, Scanlon BR, Wada Y, Hong Y, Singh VP, Chen Y, Wang C, Han Z, Yang W (2016) Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Sci Rep 6(1):24398. https://doi.org/10.1038/srep24398
Loomis BD, Luthcke SB, Sabaka TJ (2019) Regularization and error characterization of GRACE mascons. J Geodesy 93:1381–1398. https://doi.org/10.1007/s00190-019-01252-y
Loomis BD, Felikson D, Sabaka TJ, Medley B (2021) High-spatial-resolution mass rates from GRACE and GRACE-FO: global and ice sheet analyses. J Geophys Res: Solid Earth 126(12):e2021JB023024. https://doi.org/10.1029/2021JB023024
Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187
Mohanasundaram S, Mekonnen MM, Haacker E, Ray C, Lim S, Shrestha S (2021) An application of GRACE mission datasets for streamflow and baseflow estimation in the conterminous United States basins. J Hydrol 601:126622. https://doi.org/10.1016/j.jhydrol.2021.126622
Nanteza J, de Linage CR, Thomas BF, Famiglietti JS (2016) Monitoring groundwater storage changes in complex basement aquifers: an evaluation of the GRACE satellites over East Africa. Water Resour Res 52(12):9542–9564. https://doi.org/10.1002/2016WR018846
Pang Y, Wu B, Cao Y, Jia X (2020) Spatiotemporal changes in terrestrial water storage in the Beijing-Tianjin Sandstorm Source Region from GRACE satellites. Int Soil Water Conserv Res 8(3):295–307. https://doi.org/10.1016/j.iswcr.2020.06.004
Pham-Duc B, Papa F, Prigent C, Aires F, Biancamaria S, Frappart F (2019) Variations of surface and subsurface water storage in the Lower Mekong Basin (Vietnam and Cambodia) from multisatellite observations. Water. https://doi.org/10.3390/w11010075
Pokhrel Y, Shin S, Lin Z, Yamazaki D, Qi J (2018) Potential disruption of flood dynamics in the Lower Mekong River Basin due to upstream flow regulation. Sci Rep 8(1):17767. https://doi.org/10.1038/s41598-018-35823-4
Rateb A, Scanlon BR, Pool DR, Sun A, Zhang Z, Chen J, Clark B, Faunt CC, Haugh CJ, Hill M, Hobza C, McGuire VL, Reitz M, Müller Schmied H, Sutanudjaja EH, Swenson S, Wiese D, Xia Y, Zell W (2020) Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major U.S. aquifers. Water Resour Res 56(12):e2020WR027556. https://doi.org/10.1029/2020WR027556
Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15(1):159–166. https://doi.org/10.1007/s10040-006-0103-7
Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–1002. https://doi.org/10.1038/nature08238
Rodell M, Famiglietti JS, Wiese DN, Reager JT, Beaudoing HK, Landerer FW, Lo M-H (2018) Emerging trends in global freshwater availability. Nature 557(7707):651–659. https://doi.org/10.1038/s41586-018-0123-1
Rzepecka Z, Birylo M (2020) Groundwater storage changes derived from GRACE and GLDAS on smaller river basins—a case study in Poland. Geosciences. https://doi.org/10.3390/geosciences10040124
Save H (2020) CSR GRACE and GRACE-FO RL06 mascon solutions v02. https://doi.org/10.15781/cgq9-nh24
Save H, Bettadpur S, Tapley BD (2016) High-resolution CSR GRACE RL05 mascons. J Geophys Res: Solid Earth 121(10):7547–7569. https://doi.org/10.1002/2016JB013007
Scanlon BR, Zhang Z, Save H, Sun AY, Schmied HM, van Beek LPH, Wiese DN, Wada Y, Long D, Reedy RC, Longuevergne L, Döll P, Bierkens MFP (2018) Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc Natl Acad Sci 115(6):E1080–E1089. https://doi.org/10.1073/pnas.1704665115
Scanlon BR, Rateb A, Anyamba A, Kebede S, MacDonald AM, Shamsudduha M, Small J, Sun A, Taylor RG, Xie H (2022) Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ Res Lett 17(1):14046. https://doi.org/10.1088/1748-9326/ac3bfc
Schwatke C, Dettmering D, Bosch W, Seitz F (2015) DAHITI: an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol Earth Syst Sci 19(10):4345–4364. https://doi.org/10.5194/hess-19-4345-2015
Shamsudduha M, Taylor RG (2020) Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth System Dynamics 11(3):755–774. https://doi.org/10.5194/esd-11-755-2020
Shamsudduha M, Taylor RG, Longuevergne L (2012) Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Water Resour Res 48(2). https://doi.org/10.1029/2011WR010993
Shrestha S, Bach TV, Pandey VP (2016) Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environ Sci Policy 61:1–13. https://doi.org/10.1016/j.envsci.2016.03.010
Skaskevych A, Lee J, Jung HC, Bolten J, David JL, Policelli FS, Goni IB, Favreau G, San S, Ichoku CM (2020) Application of GRACE to the estimation of groundwater storage change in a data-poor region: a case study of Ngadda catchment in the Lake Chad Basin. Hydrol Process 34(4):941–955. https://doi.org/10.1002/hyp.13613
Sutanudjaja EH, van Beek R, Wanders N, Wada Y, Bosmans JHC, Drost N, van der Ent RJ, de Graaf IEM, Hoch JM, de Jong K, Karssenberg D, López López P, Peßenteiner S, Schmitz O, Straatsma MW, Vannametee E, Wisser D, Bierkens MFP (2018) PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci Model Dev 11(6):2429–2453. https://doi.org/10.5194/gmd-11-2429-2018
Tangdamrongsub N, Šprlák M (2021) The assessment of hydrologic- and flood-induced land deformation in data-sparse regions using GRACE/GRACE-FO data assimilation. Remote Sens 13(2). https://doi.org/10.3390/rs13020235
Tangdamrongsub N, Ditmar PG, Steele-Dunne SC, Gunter BC, Sutanudjaja EH (2016) Assessing total water storage and identifying flood events over Tonlé Sap basin in Cambodia using GRACE and MODIS satellite observations combined with hydrological models. Remote Sens Environ 181:162–173. https://doi.org/10.1016/j.rse.2016.03.030
Tangdamrongsub N, Han S-C, Tian S, Müller Schmied H, Sutanudjaja EH, Ran J, Feng W (2018) Evaluation of groundwater storage variations estimated from GRACE Data assimilation and state-of-the-art land surface models in Australia and the North China Plain. Remote Sens 10(3). https://doi.org/10.3390/rs10030483
Tapley BD, Watkins MM, Flechtner F, Reigber C, Bettadpur S, Rodell M, Sasgen I, Famiglietti JS, Landerer FW, Chambers DP, Reager JT, Gardner AS, Save H, Ivins ER, Swenson SC, Boening C, Dahle C, Wiese DN, Dobslaw H et al (2019) Contributions of GRACE to understanding climate change. Nat Climate Change 9(5):358–369. https://doi.org/10.1038/s41558-019-0456-2
Thomas BF, Famiglietti JS (2019) Identifying climate-induced groundwater depletion in GRACE observations. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-40155-y
UNDP (2020) Development of Groundwater Management Strategy in Cambodia: institutional assessment, capacity building plan and proposed key components of groundwater management in Cambodia, strengthening climate information and early warning system. UNDP, New York
Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20). https://doi.org/10.1029/2010GL044571
Wagner F, Tran VB, Renaud FG (2012) In: Renaud FG, Kuenzer C (eds) Groundwater resources in the Mekong Delta: availability, utilization and risks. In: The Mekong Delta System: interdisciplinary analyses of a river delta. Springer, Dordrecht, The Netherlands, pp 201–220. https://doi.org/10.1007/978-94-007-3962-8_7
Wang Q, Zheng W, Yin W, Kang G, Huang Q, Shen Y (2023) Improving the resolution of GRACE/Insar groundwater storage estimations using a new subsidence feature weighted combination scheme. Water 15(6). https://doi.org/10.3390/w15061017
Watkins MM, Wiese DN, Yuan DN, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res: Solid Earth 120(4):2648–2671. https://doi.org/10.1002/2014JB011547
Wei L, Jiang S, Ren L, Tan H, Ta W, Liu Y, Yang X, Zhang L, Duan Z (2021) Spatiotemporal changes of terrestrial water storage and possible causes in the closed Qaidam Basin, China using GRACE and GRACE Follow-On data. J Hydrol 598:126274. https://doi.org/10.1016/j.jhydrol.2021.126274
Wiese DN, Landerer FW, Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52(9):7490–7502. https://doi.org/10.1002/2016WR019344
Wiese DN, Yuan DN, Boening C, Landerer FW, Watkins MM (2018) JPL Grace mascon ocean, ice, and hydrology equivalent water height release 06 coastal resolution improvement (CRI) filtered version 1.0. Ver. 1.0. PO.DAAC, CA. https://doi.org/10.5067/TEMSC-3MJC6
Xanke J, Liesch T (2022) Quantification and possible causes of declining groundwater resources in the Euro-Mediterranean region from 2003 to 2020. Hydrogeol J 30(2):379–400. https://doi.org/10.1007/s10040-021-02448-3
Xu L, Chen N, Zhang X, Chen Z (2019) Spatiotemporal changes in China’s terrestrial water storage from GRACE satellites and its possible drivers. J Geophys Res: Atmos 124(22):11976–11993. https://doi.org/10.1029/2019JD031147
Yang X, Tian S, Feng W, Ran J, You W, Jiang Z, Gong X (2020) Spatio-temporal evaluation of water storage trends from hydrological models over Australia using GRACE mascon solutions. Remote Sens 12(21). https://doi.org/10.3390/rs12213578
Yin Z, Xu Y, Zhu X, Zhao J, Yang Y, Li J (2021) Variations of groundwater storage in different basins of China over recent decades. J Hydrol 598:126282. https://doi.org/10.1016/j.jhydrol.2021.126282
Zhang Z, Bo Y, Jin S, Chen G, Dong Z (2023) Dynamic water level changes in Qinghai Lake from integrating refined ICESat-2 and GEDI altimetry data (2018–2021). J Hydrol 617:129007. https://doi.org/10.1016/j.jhydrol.2022.129007
Zhou K, Li J, Zhang T, Kang A (2021) The use of combined soil moisture data to characterize agricultural drought conditions and the relationship among different drought types in China. Agric Water Manag 243:106479. https://doi.org/10.1016/j.agwat.2020.106479
Funding
The authors would like to extend their sincere thanks to the “Towards mainstreaming the Ecosystem-based Adaptations for Sustainable Groundwater Resources Management in the Transboundary Cambodia-Viet Nam Mekong Delta Aquifer, Lower Mekong Region” project funded by Stockholm Environment Institute (SEI) under the SUMERNET 4 All Programme, further funded by the Swedish International Development Cooperation Agency (SIDA).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(PDF 615 kb)
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Upadhyay, S., Shrestha, S., Loc, H.H. et al. Satellite-based estimates of declining groundwater storage in the transboundary Cambodia-Mekong River Delta Aquifer of the Lower Mekong region, Southeast Asia. Hydrogeol J 32, 601–619 (2024). https://doi.org/10.1007/s10040-023-02746-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-023-02746-y