Abstract
Groundwater sustainability is challenged by the difference between legal and scientific understanding of groundwater, as well as the lack of focused attention to regulatory design in the literature on groundwater institutions, governance and management. The purpose of this paper is to use the scientific characteristics of groundwater to direct the necessary elements of regulatory design for this unique element. Developing interdisciplinary language that could be applied in any jurisdiction or region, the article describes seven groundwater characteristics as processes, functions, qualities, physical sustainability, scale, information and data, and physical state. Using these characteristics of groundwater embeds the scientific understanding of groundwater into regulatory design and enables the expression of new values such as Indigenous rights to water. Applying these scientific characteristics to a case study of new groundwater regulation in a subnational jurisdiction in the Global North—British Columbia (BC), Canada—highlights the failure of regulatory design even in a well-resourced jurisdiction where environmental regulation is the norm. Groundwater in BC is extremely heterogeneous in process and function, with low observation density and undefined sustainability goals where regulations are applied uniformly. Looking forward, three recommendations can be drawn using the scientific characteristics of groundwater to improve regulatory design in BC: defining sustainability goals and ecological thresholds; regionalizing and prioritizing; and long-term planning. This science-forward and interdisciplinary approach has implications for states with customary water entitlements and multiple legal orders. It also provides practitioners with an interdisciplinary language that can be useful for assessing current and future regulatory design.
Résumé
La durabilité des eaux souterraines est mise à mal par la différence entre la compréhension juridique et l’appréhension scientifique des eaux souterraines, ainsi que par le manque d’attention portée à la conception de la réglementation dans la littérature sur les institutions, la gouvernance et la gestion des eaux souterraines. L’objectif du présent article est d’utiliser les caractéristiques scientifiques des eaux souterraines pour orienter les éléments nécessaires à la conception de la réglementation de cet élément unique. Développant un langage interdisciplinaire qui pourrait être appliqué dans n’importe quelle juridiction ou région, l’article décrit sept caractéristiques des eaux souterraines qui sont les processus, les fonctions, les qualités, la durabilité physique, l’échelle, l’information et les données et l’état physique. L’utilisation de ces caractéristiques des eaux souterraines intègre la compréhension scientifique des eaux souterraines dans la conception de la réglementation et permet l’expression de nouvelles valeurs, telles que les droits à l’eau des Indigènes. L’application de ces caractéristiques scientifiques à une étude de cas de la nouvelle réglementation des eaux souterraines dans une juridiction infranationale du Nord du globe terrestre—la Colombie-Britannique (BC), Canada–souligne l’échec de la conception de la réglementation, même dans une juridiction bien pourvue en ressources où la réglementation environnementale est la norme. En Colombie Britannique, les eaux souterraines sont extrêmement hétérogènes dans leur processus et leur fonctionnement, avec une faible densité d’observation et des objectifs de durabilité non définis et les réglementations y sont appliquées uniformément. Pour l’avenir, trois recommandations peuvent être extraites des caractéristiques des eaux souterraines pour améliorer la conception de la réglementation en Colombie Britannique : définition des objectifs de durabilité et des seuils environnementaux ; régionalisation et priorisation ; planification sur le long terme. Cette approche basée sur les avancées scientifiques et interdisciplinaire a des implications pour les Etats dotés de droits d’eau coutumiers et des ordres juridiques multiples. Il fournit aussi aux praticiens un langage interdisciplinaire qui peut être utile pour évaluer un projet actuel et futur de réglementation.
Resumen
La sostenibilidad de las aguas subterráneas se enfrenta al desafío de la diferencia entre su comprensión jurídica y científica, así como a la falta de atención centrada en el marco normativo que existe en la literatura sobre las instituciones, la gobernanza y la gestión de las aguas subterráneas. El propósito de este trabajo es utilizar las características propias de las aguas subterráneas para orientar los elementos necesarios del diseño normativo de este elemento único. Desarrollando un lenguaje interdisciplinar que podría aplicarse en cualquier jurisdicción o región, el artículo describe siete características de las aguas subterráneas como procesos, funciones, cualidades, sostenibilidad física, escala, información y datos, y estado físico. El uso de estas características de las aguas subterráneas incorpora la comprensión científica en el diseño normativo y permite la inclusión de nuevos valores, como los derechos indígenas al agua. La aplicación de estas características a un estudio de caso sobre la nueva regulación de las aguas subterráneas en una jurisdicción del Norte Global—Columbia Británica (CB), Canadá—pone de manifiesto el fracaso del marco regulador, incluso en una jurisdicción con buenos recursos en la que la regulación medioambiental es la norma. Las aguas subterráneas de CB son extremadamente heterogéneas en cuanto a procesos y funciones, con una baja densidad de observación y objetivos de sostenibilidad indefinidos en los que la normativa se aplica de manera uniforme. De cara al futuro, pueden extraerse tres recomendaciones utilizando las características de las aguas subterráneas para mejorar el diseño de la legislación en la Columbia Británica: definir objetivos de sostenibilidad y umbrales ecológicos; regionalizar y priorizar; y planificar a largo plazo. Este enfoque científico e interdisciplinario tiene implicaciones para los Estados con derechos de aguas tradicionales y múltiples ordenamientos jurídicos. También proporciona a los profesionales un lenguaje interdisciplinar que puede ser útil para evaluar el diseño normativo actual y futuro.
摘要
地下水的可持续性受到法律和科学对地下水理解的差异,以及文献中关于地下水制度、治理和管理的监管设计关注不足的挑战。本文旨在利用地下水的科学特性来指导监管设计所必需的要素。通过开发可应用于任何司法管辖区或地区的跨学科语言,论文将地下水的七个特性描述为过程、功能、质量、物理可持续性、尺度、信息和数据以及物理状态。使用这些地下水特性将科学对地下水的科学理解嵌入到监管设计中,并使其能够表达新的价值观,如土著对水的权利。将这些科学特性应用于北半球的一个次国家管辖区——加拿大不列颠哥伦比亚省(BC)的新地下水监管案例研究中,突显了监管设计的失败,即使在资源充足、环境监管成为常态的管辖区也一样。在BC,地下水的过程和功能极为异质化,观测密度低,可持续性目标未定义,而监管法规却是统一适用的。展望未来,可以利用地下水的科学特性提出三个建议,以改善不列颠哥伦比亚省的监管设计:定义可持续性目标和生态阈值;进行区域化和优先排序;以及进行长期规划。这种以科学为先导的跨学科方法对于具有习惯性水权和多个法律秩序的国家具有重要意义。它还为从业者提供了一种跨学科语言,可以用于评估当前和未来的监管设计。
Resumo
A sustentabilidade das águas subterrâneas é desafiada pela diferença entre a compreensão legal e científica das águas subterrâneas, bem como pela falta de atenção focada no projeto regulatório na literatura sobre instituições, governança e gestão das águas subterrâneas. O objetivo deste artigo é usar as características científicas das águas subterrâneas para direcionar os elementos necessários do projeto regulatório para este elemento único. Desenvolvendo uma linguagem interdisciplinar que pode ser aplicada em qualquer jurisdição ou região, o artigo descreve sete características das águas subterrâneas como processos, funções, qualidades, sustentabilidade física, escala, informações e dados e estado físico. O uso dessas características das águas subterrâneas incorpora a compreensão científica das águas subterrâneas no projeto regulatório e permite a expressão de novos valores, como os direitos indígenas à água. A aplicação dessas características científicas a um estudo de caso de uma nova regulamentação de águas subterrâneas em uma jurisdição subnacional no norte global—Colúmbia Britânica (CB), Canadá—destaca a falha do projeto regulatório mesmo em uma jurisdição com bons recursos onde a regulamentação ambiental é a norma. A água subterrânea na CB é extremamente heterogênea em processo e função, com baixa densidade de observação e metas de sustentabilidade indefinidas, onde os regulamentos são aplicados uniformemente. Olhando para o futuro, três recomendações podem ser feitas usando as características científicas das águas subterrâneas para melhorar o desenho regulatório na CB: definir metas de sustentabilidade e limites ecológicos; regionalizar e priorizar; e planejamento de longo prazo. Esta abordagem científica e interdisciplinar tem implicações para os estados com direitos habituais de água e múltiplas ordens legais. Ele também fornece aos profissionais uma linguagem interdisciplinar que pode ser útil para avaliar o projeto regulatório atual e futuro.
Similar content being viewed by others
References
Aarnoudse E, Qu W, Bluemling B, Herzfeld T (2017) Groundwater quota versus tiered groundwater pricing: two cases of groundwater management in north-west China. Int J Water Resour Dev 33(6):917–934. https://doi.org/10.1080/07900627.2016.1240069
Abbott BW, Bishop K, Zarnetske JP, Minaudo C, Chapin FS III, Krause S, Hannah DM, Conner L, Ellison D, Godsey SE, Plont S, Marcais J, Kolbe T, Huebner A, Frei RA, Hampton T, Gu S, Buhman M, Sayedi SS et al (2019) Human domination of the global water cycle absent from depictions and perceptions. Nat Geosci 12:533–540. https://doi.org/10.1038/s41561-019-0374-y
Aeschbach-Hertig W, Gleeson T (2012) Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci 5:853–861. https://doi.org/10.1038/ngeo1617
Allen DM, Stahl K, Whitfield PH, Moore RD (2014) Trends in groundwater levels in British Columbia. Canadian Water Resources Journal 39(1):15–31
Anderson EP, Jackson S, Tharme SE, Douglas M, Flotemersch JE, Zwarteveen M, Lokgariwar C, Montoya M, Wali A, Tipa GT, Jardine TD, Olden JD, Cheng L, Conallin J, Cosens B, Dickens C, Garrick D, Groenfeldt D, Kabogo J et al (2019) Understanding rivers and their social relations: a critical step to advance environmental water management. Water 6(6). https://doi.org/10.1002/wat2.1381
Apaydin A (2011) Groundwater legislation in Turkey: problems of conception and application. Water Int 36(3):314–327. https://doi.org/10.1080/02508060.2011.586750
Araral E (2014) Policy and regulatory design for developing countries: a mechanism design and transaction cost approach. Policy Sci 47(3):289–303
Barlow PM, Leake SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376
Barthel R, Seidl R (2017) Interdisciplinary collaboration between natural and social sciences: status and trends exemplified in groundwater research. PLoS One 12(1):e0170754. https://doi.org/10.1371/journal.pone.0170754
Bierkens MFP, Wada Y (2019) Non-renewable groundwater use and groundwater depletion: a review. Environ Res Lett 14:063002. https://doi.org/10.1088/1748-9326/ab1a5f
Blohmke J, Kemp R, Türkeli S (2016) Disentangling the causal structure behind environmental Regulation. Technol Forecast Soc Change 103. https://doi.org/10.1016/j.techfore.2015.10.013
Bosch HJ, Gupta J (2023) The tension between state ownership and private quasi‐property rights in water. WIREs Water 10(1). https://doi.org/10.1002/wat2.1621
Bracken LJ, Oughton EA (2006) What do you mean? The importance of language in developing interdisciplinary research. Transactions - Institute of British Geographers 31(3):371–382
Brandes OM, Curran D (2016) Changing currents: a case study in the evolution of water law in Western Canada in water policy and governance in Canada. Springer, Cham, Switzerland, pp 45–67
Bredehoeft JD (2002) The water budget myth revisited: Why hydrogeologists model. Ground Water 40(4):340–345
Brunner P, Cook PG, Simmons CT (2011) Disconnected surface water and groundwater: from theory to practice. Ground Water 49:460–467. https://doi.org/10.1111/j.1745-6584.2010.00752.x
Burke J, Moench M, Sauveplane C (1999) Ground water and society: problems in variability and points of engagement. In: Salman M, Salman A (eds) Ground water: legal and policy perspectives. World Bank technical paper no. 456, World Bank, Washington, DC, pp 31–52
Caponera DA, Nanni M (2019) Principles of water law and administration: national and international, 3rd edn. Routledge/Taylor, New York
Chandhoke N (2003) Governance and plurarisation of the state: implications for democratic citizenship. Econ Polit Weekly 38(28):2957–2968
Council of Canadian Academies (2009) The sustainable management of groundwater in Canada. The Council of Canadian Academies, Ottawa
Craft A, King L (2021) Building the treaty #3 Nibi declaration using an Anishinaabe methodology of ceremony, language and engagement. Water 13:532. https://doi.org/10.3390/w13040532
Cullet P (2014) Groundwater law In India: towards a framework ensuring equitable access and aquifer protection. J Environ Law 26(1):55–81. https://doi.org/10.1093/jel/eqt031
Cullet P, Stephan RM (2017) Introduction to ‘groundwater and climate change: multi-level law and policy perspectives. Water International 42(6):641–645. https://doi.org/10.1080/02508060.2017.1358960
Curran D (2017) Leaks in the system: environmental flows, aboriginal rights, and the modernization imperative for water law in British Columbia. UBC Law Rev 2:233–292
Curran D (2019) Indigenous processes of consent: repoliticizing water governance through legal pluralism. Water 11(3):571. https://doi.org/10.3390/w11030571
Curran D, Brandes OM (2019) Water sustainability plans: potential, options and essential content Victoria, Canada. POLIS Project on Ecological Governance & Environmental Law Centre, University of Victoria. https://poliswaterproject.org/files/2019/10/POLIS-WSP2019-6e1-web.pdf. Accessed January 16, 2023
Cuthbert MO, Gleeson T, Moosdorf N, Befus KM, Schneider A, Hartmann J, Lehner B (2019) Global patterns and dynamics of climate–groundwater interactions. Nat Clim Chang 9:137–141. https://doi.org/10.1038/s41558-018-0386-4
Dalin C, Wada Y, Kastner T, Puma MJ (2017) Groundwater depletion embedded in international food trade. Nature 543:700–704. https://doi.org/10.1038/nature21403
Davies S, Wilson J, Ridges M (2021) Redefining ‘cultural values’: the economics of cultural flows. Australasian J Water Resour 25(1):15–26. https://doi.org/10.1080/13241583.2020.1795339
de Graaf IEM, van Beek RLPH, Gleeson T, Moosdorf N, Schmitz O, Sutanudjaja EH, Bierkens MFP (2017) A global-scale two-layer transient groundwater model: development and application to groundwater depletion. Adv Water Resour 102:53–67. https://doi.org/10.1016/j.advwatres.2017.01.011
de Graaf IEM, Gleeson T, van Beek RLPH, Sutanudjaja EH, Bierkens MFP (2019) Environmental flow limits to global groundwater pumping. Nature 574:90–94. https://doi.org/10.1038/s41586-019-1594-4
De Stefano L, López-Gunn E (2012) Unauthorized groundwater use: institutional, social and ethical considerations. Water Policy 14:147–160
Delgado-Serrano, MM, Borrego-Marin, MM (2020) Drivers of innovation in groundwater governance. The links between the social and the ecological systems. Land Use Policy 91:104368–. https://doi.org/10.1016/j.landusepol.2019.104368
Eaton BC, Moore RD (2010) Chapter 4 – regional hydrology. In Compendium of forest hydrology and geomorphology in British Columbia. In: Pike RG, Redding TE, Moore RD, Winkler RD, Bladon KD (eds) BC ministry of forests and range research branch, Victoria, BC and FORREX Forest Research Extension Partnership, Kamloops, BC Land Management Handbook, p 66. http://www.forrex.org/program/water/compendium.asp
Elshall AS, Arik AD, El-Kadi AI, Pierce S, Ye M, Burnett KM, Wada CA, Bremer LL, Chun G (2020) Groundwater sustainability: a review of the interactions between science and policy. Environ Res Lett 15:093004. https://doi.org/10.1088/1748-9326/ab8e8c
Famiglietti JS (2014) The global groundwater crisis. Nat Clim Chang 4:945–948. https://doi.org/10.1038/nclimate2425
Fan Y, Li H, Miguez-Macho G (2013) Global patterns of groundwater table depth. Science 339:940–943. https://doi.org/10.1126/science.1229881
Ferguson G, McIntosh JC, Warr O, Sherwood Lollar B, Ballentine CJ, Famiglietti JS, Kim JH, Michalski JR, Mustard JF, Tarnas J, McDonnell JJ (2021) Crustal groundwater volumes greater than previously thought. Geophys Res Lett 48:16 e2021GL093549. https://doi.org/10.1029/2021GL093549
First Nations Information Governance Centre (2023) The First Nations principles of OCAP®. https://fnigc.ca/ocap-training/. Accessed January 16, 2023
Food and Agriculture Organization of the United Nations (2016) Global diagnostic on groundwater governance: groundwater governance a global framework for action. Food and Agriculture Organization of the United Nations, Rome
Forstner T, Gleeson, T, Borrett L, Allen DM, Wei M, Baye A (2018) Mapping aquifer stress, groundwater recharge, groundwater use, and the contribution of groundwater to environmental flows for unconfined aquifers across British Columbia; Water Science Series; WSS2018-04; Province of British Columbia, Victoria, BC, Canada. http://a100.gov.bc.ca/appsdata/acat/documents/r54468/WSS-2018-04GWfootprint_1532281350342_2278704448.pdf. Accessed January 16, 2023
Freeth R, Caniglia G (2020) Learning to collaborate while collaborating: advancing interdisciplinary sustainability research. Sustain Sci 15:247–261. https://doi.org/10.1007/s11625-019-00701-z
Gain AK, Hossain MS, Benson D, Di Baldassarre G, Giupponi C, Huq N (2021) Social-ecological system approaches for water resources management. Int J Sustainable Dev World Ecol 28(2):109–124. https://doi.org/10.1080/13504509.2020.1780647
Gale v British Columbia (Assistant Regional Water Manager) (2015) British Columbia Environmental Appeal Board 2012-WAT-013(c). Province of BC, Victoria, BC
Gehring v Chevron Canada Ltd (2006) BCSC:1639. Province of BC, Victoria, BC
Gehring v Chevron Canada Ltd (2007) BCCA:557. Province of BC, Victoria, BC
Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3(6):378–379. https://doi.org/10.1038/ngeo881
Gleeson T, Befus K, Jasechko S, Luijendijk E, Cardenas MB (2016) The global volume and distribution of modern groundwater. Nat Geosci 9:161–167. https://doi.org/10.1038/ngeo2590
Gleeson T, Cuthbert MO, Ferguson G, Perrone D (2020a) Global groundwater sustainability, resources, and systems in the Anthropocene. Annu Rev Earth Planet Sci 48:431–463. https://doi.org/10.1146/annurev-earth-071719-055251
Gleeson T, Wang-Erlandsson L, Porkka M, Zipper SC, Jaramillo F, Gerten D, Fetzer I, Cornell SE, Piemontese L, Gordon LJ, Rockström J, Oki T, Sivapalan M, Wada Y, Brauman KA, Flörke M, Bierkens MFP, Lehner B, Keys P et al (2020b) Illuminating water cycle modifications and earth system resilience in the Anthropocene. Water Resour Res 56. https://doi.org/10.1029/2019WR024957
Global Water Partnership (2000) Towards water security: a framework for action, GWP March 2000. Global Water Partnership, Stockholm, Sweden
Government of Canada (2023) First Nations location. https://open.canada.ca/data/en/dataset/b6567c5c-8339-4055-99fa-63f92114d9e4. Accessed January 16, 2023
Gray J, Holley C, Rayfuse RG (2016) The challenge of trans-jurisdictional water law and governance. In: Gray J Holley C, Rayfuse RG (eds) Trans-jurisdictional water law and governance. Routledge, New York, pp 3–18
Griebler C, Avramov M (2015) Groundwater ecosystem services: a review. Freshwater Sci 34:355–367. https://doi.org/10.1086/679903
Guo HL, Cheng WG, Zhang Z (2015) Groundwater-abstraction induced land subsidence and groundwater regulation in the North China Plain. Prevention and Mitigation of Natural and Anthropogenic Hazards Due to Land Subsidence 372:17–21. https://doi.org/10.5194/piahs-372-17-2015
Halalt First Nation v British Columbia (Minister of Environment) (2012) BCCA:472. Minister of Environment, Province of BC, Victoria, BC
Halstead v Water Manager (Ministry of Forests, Lands and Natural Resources Operations) (2018) British Columbia Environmental Appeal Board. Decision No. 2017-WAT-007(a). Ministry of Forests, Lands and Natural Resources Operations, Province of BC, Victoria, BC
Harris LM (2017) Political ecologies of the state: recent interventions and questions going forward. Polit Geogr 58:90–92. https://doi.org/10.1016/j.polgeo.2017.03.006
Hassing J, Ipsen N, Jønch Clausen T, Larsen H, Lindgaard-Jørgensen P (2009) Integrated water resource management in action. UNESCO, Paris. https://www.gwp.org/globalassets/global/toolbox/references/iwrm-in-action-unescounwwapunep-dhi-2009.pdf. Accessed Jan 16 2023
Highlands District Community Association v British Columbia (Attorney General) (2020) BCSC:1386. Attorney General, Province of BC, Victoria, BC
Holley C, Mutongwizo T, Pucci S, Castilla-Rho J, Sinclair D (2020) Groundwater regulation, compliance and enforcement: insights on regulators, regulated actors and frameworks in New South Wales, Australia. In: Sustainable groundwater management. Springer, Cham, Switzerland, pp 411–433
IGRAC (2020) Groundwater monitoring programmes: a global overview of quantitative groundwater monitoring networks. Report. https://www.un-igrac.org/resource/national-groundwater-monitoring-programmes-global-overview-quantitative-groundwater. Accessed January 16, 2023
Jackson S, Pollino C, Maclean K, Bark R, Moggridge B (2015) Meeting indigenous peoples’ objectives in environmental flow assessments: case studies from an Australian multi-jurisdictional water sharing initiative. J Hydrol 522:141–151. https://doi.org/10.1016/j.jhydrol.2014.12.047
Jones J (2007) Regulatory design for scientific uncertainty: acknowledging the diversity of approaches in environmental regulation and public administration. J Environ Law 19(3):347–365
Kemper KE (2007) Instruments and institutions for groundwater management. In: Giordano M, Villholth KG (eds) The agricultural groundwater revolution: opportunities and threats to development. CABI, Wallingford, UK, pp 153–171
Knorr H, Theesfeld I, Soliev S (2022) License to drill: typology of groundwater use regulations in agriculture of Uzbekistan. Int J Water Resour Dev 38(5):815–835. https://doi.org/10.1080/07900627.2021.1924633
Koski C (2007) Requests and reality: the interplay of environmental regulatory design and implementation. Doctoral dissertation, University of Washington, Seattle
Kollet SJ, Maxwell RM (2008) Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour Res 44. https://doi.org/10.1029/2007WR006004
Kreamer DK, Stevens LE, Ledbetter JD (2015) Groundwater dependent ecosystems—Science, challenges, and policy directions in groundwater, vol 205. In: Adelana SM (ed) Nova Science Publishers, Inc., p 230
Li F, Wang Y, Zhao Y, Qiao J (2018) Modelling the response of vegetation restoration to changes in groundwater level, based on ecologically suitable groundwater depth. Hydrogeol J 26(7):2189–2204. https://doi.org/10.1007/s10040-018-1813-3
Liao C, Hsiang-Wei T (2016) Modeling of a block tariff system for groundwater regulation. Nat Resour Model 29(4):520–537
Ling H, Guo B, Yan J, Deng X, Xu H, Zhang G (2020) Enhancing the positive effects of ecological water conservancy engineering on desert Riparian Forest Growth in an Arid Basin. Ecol Indic 118:106797–. https://doi.org/10.1016/j.ecolind.2020.106797
Lopez-Gunn E (2009) Governing shared groundwater: The controversy over private regulation. Geogr J 175(1):39–51
MacLeod A (2021) BC’s groundwater licensing system is still in crisis. The Tyee October 15, 2021. https://thetyee.ca/News/2021/10/15/BC-Groundwater-Licensing-System-Crisis/. Accessed January 16, 2023
MacLeod A (2022) Government’s efforts to licence groundwater falls short. The Tyee March 3, 2022. https://thetyee.ca/News/2022/03/03/Government-Effort-To-License-Groundwater-Falls-Short/. Accessed January 16, 2023
Macpherson E (2017) Beyond recognition: lessons from Chile for allocating indigenous water rights in Australia. University of New South Wales Law Journal 40(3):1130–1169
Macpherson EJ (2019) Indigenous water rights in law and regulation: lessons from comparative experience. Cambridge University Press, Cambridge, UK
Margat J, van der Gun J (2013) Groundwater around the world: a geographic synopsis. CRC, Boca Raton, FL
Marshall V, Kirby MD (2017) Overturning aqua nullius: securing aboriginal water rights Canberra. Aboriginal Studies Press, Acton, ACT, Australia
Mechlem K (2016) Groundwater governance: the role of legal frameworks at the local and national level—established practice and emerging trends. Water 8(8):347. https://doi.org/10.3390/w8080347
Missimer TM, Noreddine G, Amy GL (2014) Groundwater management using spatial and temporal aquifer zoning. J - Am Water Works Assoc 106(6):E278–E288
Moggridge BJ (2020) Aboriginal people and groundwater. Proceed Royal Soc Queensland 126:11–27. https://doi.org/10.3316/informit.626515044212169
Mohan C, Gleeson T, Forstner T, Famiglietti JS, de Graaf I (2022) Quantifying groundwater’s contribution to regional environmental flows in diverse hydrologic landscapes. Authorea. https://doi.org/10.1002/essoar.10511792.1
Molle F, Closas A (2020a) Groundwater licensing and its challenges. Hydrogeol J 28(6):1961–1974. https://doi.org/10.1007/s10040-020-02179-x
Molle F, Closas A (2020b) Why is state-centered groundwater governance largely ineffective? a review. Water 7(1). https://doi.org/10.1002/wat2.1395
Moore ML, von der Porten S, Castleden H (2017) Consultation is not consent: hydraulic fracturing and water governance on Indigenous lands in Canada. Water 4(1). https://doi.org/10.1002/wat2.1180
Muchmore AI (2016) Uncertainty, complexity, and regulatory design. Houston Law Rev 53(5):1321–1367
Mukherji A, Shah T (2005) Groundwater socio-ecology and governance: a review of institutions and policies in selected countries. Hydrogeol J 13(1):328–345. https://doi.org/10.1007/s10040-005-0434-9
Naber MA, Molle F (2017) Controlling groundwater over abstraction: state policies vs local practices in the Jordan highlands. Water Policy 19:692–708
Nanni M (2012) Legislation as a tool in support of adaptive water management in response to climate change. Water Int 37(6):628–639. https://doi.org/10.1080/02508060.2012.714966
Napoleon V (2009) Ayook: Gitksan legal order, law, and legal theory. University of Victoria, Victoria, Canada. https://dspace.library.uvic.ca/handle/1828/1392. Accessed March 2023
Native Land (2023) Website https://native-land.ca/. Accessed January 16, 2023
Nelson R, Quevauviller P (2016) Groundwater law. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (eds) Integrated groundwater management. Springer, Cham, pp 173–196. https://doi.org/10.1007/978-3-319-23576-9_7
November J, Van Ham R, Raedschelders S (2021) Enforcement of groundwater drilling and abstraction sites: beyond the backyard. In: Advances in geoethics and groundwater management: theory and practice for a sustainable development. Springer, Cham, Switzerland, pp 89–91
Nygren A (2021) Water and power, water’s power: state-making and socionature shaping volatile rivers and riverine people in Mexico. World Dev 146
Ostrom E (2005) Understanding institutional diversity. Princeton University Press, Princeton, NJ
Ostrom E (2007) A diagnostic approach for going beyond panaceas. Proceedings of the National Academy of Sciences. PNAS 104(39):15181–15187. https://doi.org/10.1073/pnas.0702288104
Parfitt B (2021) Out of Water? Canadian Centre for Policy Alternatives. May 21 2021. https://www.policynote.ca/water-licences/. Accessed January 16, 2023
Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644
Pettersson M, Soderholm P (2014) Industrial pollution control and efficient licensing processes: the case of Swedish regulatory design. Sustainability 6(8):5401–5422
Plummer R, Velaniškis J, de Grosbois D, Kreutzwiser RD, de Loë R (2010) The development of new environmental policies and processes in response to a crisis: the case of the multiple barrier approach for safe drinking water. Environ Sci Policy 13(6):535–548
Province of BC (2009) Living water smart: British Columbia’s water plan.https://www.gov.bc.ca/assets/gov/environment/air-land-water/water/water-planning/livingwatersmart_book.pdf. Accessed 18 Mar 2023
Province of BC (2010a) British Columbia’s water act modernization discussion paper. https://engage.gov.bc.ca/app/uploads/sites/71/2019/03/wam_discussion_paper.pdf. Accessed 16 Jan 2023
Province of BC (2010b) Policy proposal on British Columbia’s new water act. https://engage.gov.bc.ca/app/uploads/sites/71/2019/03/WSA_policy_proposal_Dec-2010.pdf. Accessed 18 Mar 2023
Province of BC (2013) Legislative proposal overview. https://engage.gov.bc.ca/app/uploads/sites/71/2013/10/WSA_overview_web.pdf. Accessed 18 Mar 2023
Province of BC (2016a) Licensing groundwater users. http://www.llbc.leg.bc.ca/public/pubdocs/bcdocs2016/595361/licensinggroundwaterbrochure.pdf. Accessed January 16, 2023
Province of BC (2016b) Water pricing changes. http://www.llbc.leg.bc.ca/public/pubdocs/bcdocs2016/597054/waterpricingchanges_brochure_web.pdf. Accessed January 16, 2023
Province of BC (2016c) Water sustainability fees, rentals and charges tariff regulation. BC Reg 37/2016 February 29 2016. Province of BC, Victoria, BC
Province of BC (2019a) Long-term trends in groundwater levels in B.C. Environmental Reporting BC: State of Environment Reporting, Ministry of Environment and Climate Change Strategy, Victoria, BC, Canada. https://www.env.gov.bc.ca/soe/indicators/water/print_ver/envreportbc_gwl_March2019.pdf. Accessed January 16, 2023
Province of BC (2019b) Water sustainability act blog post #27: groundwater licensing update. https://engage.gov.bc.ca/watersustainabilityact/2019/02/19/blog-post-27-groundwater-licensing-update/. Accessed January 16, 2023
Province of BC (2019c) Declaration on the Rights of Indigenous Peoples Act. SBC 2019 Chapter 44, Province of BC, Victoria, BC
Province of BC (2020) Partnership support management of Koksilah watershed.https://news.gov.bc.ca/releases/2020FLNR0015-000248. Accessed January 16, 2023
Province of BC (2022a) Environmental flow needs policy. https://www.gov.bc.ca/assets/gov/environment/air-land-water/water/water-rights/efn_policy_jan-2022_signed.pdf. Accessed January 16, 2023
Province of BC (2022b) Order of the Minister of Forests, Lands and Natural Resource Operations and Rural Development. Ministerial Order no. M8, January 13 2022, Province of BC, Victoria, BC
Province of BC (2023a) New requirements for groundwater users. https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-licensing-rights/water-licences-approvals/new-requirements-for-groundwater-users. Accessed January 16, 2023
Province of BC (2023b) Monitoring aquifers: provincial groundwater observation well network. https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/groundwater-wells-aquifers/groundwater-observation-well-network. Accessed January 16, 2023
Province of BC (2023c) Understanding aquifers. https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/groundwater-wells-aquifers/understanding-aquifers. Accessed January 16, 2023
Regulation WS (2016) BC Reg. 36/2016 (February 29 2016). Province of BC, Victoria, BC
Reinecke R, Foglia L, Mehl S, Trautmann T, Cáceres D, Döll P (2019) Challenges in developing a global gradient-based groundwater model (G3M v1.0) for the integration into a global hydrological model. Geosci Model Dev 12:2401–2418. https://doi.org/10.5194/gmd-12-2401-2019
Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5238. https://doi.org/10.1002/2015WR017349
Rinaudo J-D, Montginoul M, Varanda M, Bento S (2012) Envisioning innovative groundwater regulation policies through scenario workshops in France and Portugal. Irrig Drain 61:65–74. https://doi.org/10.1002/ird.1661
Rosa L, Chiarelli DD, Tu C, Rulli MC, D’Odorico P (2019) Global unsustainable virtual water flows in agricultural trade. Environ Res Lett 14:114001. https://doi.org/10.1088/1748-9326/ab4bfc
Scott A (2008) The evolution of resource property rights. Oxford University Press, Oxford
Seward P, Xu Y (2019) The case for making more use of the Ostrom design principles in groundwater governance research: a South African perspective. Hydrogeol J 27(3):1017–1030. https://go.exlibris.link/dFTQ2qxQ. Accessed January 16, 2023
Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25(1):11–32. https://doi.org/10.1080/02508060008686794
Syilx Okanagan Nation (2014) Syilx Nation Siwɬkw declaration. https://www.syilx.org/wp/wp-content/uploads/2016/11/Okanagan-Nation-Water-Declaration_Final_CEC_Adopted_July_31_2014.pdf. Accessed January 16, 2023
Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. https://doi.org/10.1029/2004GL019920
Taylor M (2015) The political ecology of climate change adaptation: livelihoods, agrarian change and the conflicts of development. Routledge, London
Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M, Konikow L, Green T, Chen J, Taniguchi M, Bierkens MFP, MacDonald A, Fan Y, Maxwell RM, Yechieli Y et al (2013) Ground water and climate change. Nat Clim Chang 3:322–329. https://doi.org/10.1038/nclimate1744
Theesfeld I (2010) Institutional challenges for National Groundwater Governance: policies and issues. Ground Water 48(1):131–142. https://doi.org/10.1111/j.1745-6584.2009.00624.x
Turco MJ, Petrov A (2015) Effects of groundwater regulation on aquifer-system compaction and subsidence in the Houston-Galveston Region, Texas, USA. Prevention and Mitigation of Natural and Anthropogenic Hazards Due to Land Subsidence 372:511–514. https://doi.org/10.5194/piahs-372-511-2015
United Nations General Assembly (1993) United Nations Declaration on the rights of Indigenous peoples. Resolution A/RES/61/295, United Nations, New York
Van der Gun JAM (2007) Sharing groundwater information, knowledge and experience on a worldwide scale. In: Giordano M, Villholth K (eds) The agricultural ground water revolution: opportunities and threats to development. CABI, Wallingford, UK, pp 362–392
Van der Gun J, Aureli A, Merla A (2016) Enhancing groundwater governance by making the linkage with multiple uses of the subsurface space and other subsurface resources. Water 8(6):222. https://doi.org/10.3390/w8060222
Vervoort JM, Rutting L, Kok K, Hermans FLP, Veldkamp T, Bregt AK, van Lammeren R (2012) Exploring dimensions, scales, and cross-scale dynamics from the perspectives of change agents in social–ecological systems. Ecol Soc 17(4):24. https://doi.org/10.5751/ES-05098-170424
Villholth KG (2021) One water: expanding boundaries for a new deal and a safe planet for all. One Earth 4(4):474–477. https://doi.org/10.1016/j.oneear.2021.03.011
Villholth KG, Conti KI (2017) Groundwater governance: rationale, definition, current state and heuristic framework. In: Advances in groundwater governance, 1st edn. CRC, Boca Raton, FL, pp 3–32
Wada Y, Van Beek LPH, Van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:1–5. https://doi.org/10.1029/2010GL044571
Water Sustainability Act (2014) SBC 2014 c 15. Province of BC, Victoria, BC
Water Protection Act (1995) SBC 1995 c 34. Province of BC, Victoria, BC
Wester P, Minero RS, Hoogesteger J (2011) Assessment of the development of aquifer management councils (COTAS) for sustainable groundwater management in Guanajuato, Mexico. Hydrogeol J 19(4):889–899. https://doi.org/10.1007/s10040-011-0733-2
White III KD (2019) Consent. Union of British Columbia Indian Chiefs, Vancouver, BC. https://d3n8a8pro7vhmx.cloudfront.net/ubcic/pages/4091/attachments/original/1571858202/consent_paper_-_final.pdf?1571858202. Accessed January 16, 2023S
Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45. https://doi.org/10.1007/s100400050178
Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139. https://doi.org/10.3133/cir1139
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: Key terminology
Appendix: Key terminology
-
First Nations: Métis and Inuit are the political organizations of Indigenous communities that interact with the state in Canada. First Nations are the principal Indigenous organization in BC.
-
Governance: How decisions are made (who makes decisions, how, and at what scale). In policy science, governance has moved beyond the state into many institutions and processes that include civil society, markets, transnational bodies and local organizations as well as state governments (Chandhoke 2003 p. 2957).
-
Groundwater sustainability: Maintaining dynamically stable groundwater levels, flows, and quality using equitable, effective, and long-term governance and management to sustain water, food, and energy security, environmental flows, and groundwater-dependent ecosystems, infrastructure, social well-being, and local economies for current and future generations (Gleeson et al. 2020a). The focus herein is on how the physical components of sustainability (maintaining levels and flows) relate to regulatory design (Fig. 2).
-
Indigenous communities: Self-identified groups of Indigenous peoples.
-
Integrated water resources management (IWRM): A process that promotes the co-ordinated development and management of water, land, and related resources to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems (Hassing et al. 2009).
-
Regulatory design: The sum total of choices of legal approaches and strategies that result in a regulatory infrastructure intended to meet specific policy outcomes.
-
Scale: An encompassing term that represents the basic spatial, temporal, and power dimensions of a system, or of an analysis of a system (Vervoort et al. 2012).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Curran, D., Gleeson, T. & Huggins, X. Applying a science-forward approach to groundwater regulatory design. Hydrogeol J 31, 853–871 (2023). https://doi.org/10.1007/s10040-023-02625-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-023-02625-6