[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A novel video saliency estimation method in the compressed domain

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel compressed domain saliency estimation method based on analyzing block motion vectors and transform residuals extracted from the bitstream of H.264/AVC compressed videos. Block motion vectors are analyzed by modeling their orientation values utilizing Dual Cross Patterns, a feature descriptor that earlier found applications in face recognition to obtain the motion saliency map. The transform residuals are analyzed by utilizing lifting wavelet transform on the luminance component of the macro-blocks to obtain the spatial saliency map. The motion saliency map and the spatial saliency map are fused utilizing the Dempster–Shafer combination rule to generate the final saliency map. It is shown through our experiments that Dual Cross Patterns and lifting wavelet transform features fused via Dempster–Shafer rule are superior in predicting fixations as compared to the existing state-of-the-art saliency models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agarwal G, Anbu A, Sinha A (2003) A fast algorithm to find the region-of-interest in the compressed mpeg domain. In: International conference on multimedia and expo. ICME ’03, vol 2, pp II–133

  2. Bellitto G, Salanitri FP, Palazzo S, Rundo F, Giordano D, Spampinato C (2021) Video saliency detection with domain adaptation using hierarchical gradient reversal layers. Int J Comput Vis. 129:3216–3232

    Article  Google Scholar 

  3. Borji A (2019) Saliency prediction in the deep learning era: successes and limitations. IEEE Trans Pattern Anal Mach Intell 1–1

  4. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207

    Article  Google Scholar 

  5. Ding C, Choi J, Tao D, Davis LS (2016) Multi-directional multi-level dual cross patterns for robust face recognition. IEEE Trans Pattern Anal Mach Intell 38(3):518–531

    Article  Google Scholar 

  6. Fang Y, Lin W, Chen Z, Tsai C-M, Lin C-W (2014) A video saliency detection model in compressed domain. IEEE Trans Circuits Syst Video Technol 24(1):27–38

    Article  Google Scholar 

  7. Fontani M, Bianchi T, De Rosa A, Piva A, Barni M (2013) A framework for decision fusion in image forensics based on Dempster–Shafer theory of evidence. IEEE Trans Inf Forensics Secur 8(4):593–607

    Article  Google Scholar 

  8. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926

    Article  Google Scholar 

  9. Hadizadeh H, Bajic IV (2014) Saliency-aware video compression. IEEE Trans Image Process 23(1):19–33

    Article  MathSciNet  Google Scholar 

  10. Hadizadeh H, Enriquez MJ, Bajic IV (2012) Eye-tracking database for a set of standard video sequences. IEEE Trans Image Process 21(2):898–903

    Article  MathSciNet  Google Scholar 

  11. Hossein Khatoonabadi S, Vasconcelos N, Bajic IV, Shan Y (2015) How many bits does it take for a stimulus to be salient? In: Proceedings to the IEEE conference on computer vision and pattern recognition, pp 5501–5510

  12. Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2(3):194

    Article  Google Scholar 

  13. Khatoonabadi SH, Bajić IV, Shan Y (2015) Compressed-domain correlates of human fixations in dynamic scenes. Multimed Tools Appl. 74(22):10057–10075

    Article  Google Scholar 

  14. Khatoonabadi SH, Bajić IV, Shan Y (2017) Compressed-domain visual saliency models: a comparative study. Multimed Tools Appl 76(24):26297–26328

    Article  Google Scholar 

  15. Le Meur O, Le Callet P, Barba D, Thoreau D (2006) A coherent computational approach to model bottom-up visual attention. IEEE Trans Pattern Anal Mach Intell 28(5):802–817

    Article  Google Scholar 

  16. Li Y, Lei X, Liang Y, Chen J (2018) Human fixations detection model in video-compressed-domain based on MVE and OBDL. In: Proceedings to advanced optical imaging technologies, vol 10816, p 108161O. International Society for Optics and Photonics

  17. Li Y, Li Y (2017) A fast and efficient saliency detection model in video compressed-domain for human fixations prediction. Multimed Tools Appl 76(24):26273–26295

    Article  Google Scholar 

  18. Li Y, Li S, Chen C, Hao A, Qin H (2021) A plug-and-play scheme to adapt image saliency deep model for video data. IEEE Trans Circuits Syst Video Technol 31(6):2315–2327

    Article  Google Scholar 

  19. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Article  Google Scholar 

  20. Liu Y, Han J, Zhang Q, Shan C (2020) Deep salient object detection with contextual information guidance. IEEE Trans Image Process 29:360–374

    Article  MathSciNet  Google Scholar 

  21. Ma Y-F, Zhang H-J (2001) A new perceived motion based shot content representation. In: International conference on image processing, vol 3, pp 426–429

  22. Ma Y-F, Zhang H-J (2002) A model of motion attention for video skimming. In: Proceedings international conference on image processing, vol 1, pp I–I

  23. Ouerhani N, Hugli H (2005) Robot self-localization using visual attention. In: International symposium on computational intelligence in robotics and automation, pp 309–314

  24. Peters RJ, Iyer A, Itti L, Koch C (2005) Components of bottom-up gaze allocation in natural images. Vis Res 45(18):2397–2416

    Article  Google Scholar 

  25. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    Book  Google Scholar 

  26. Siagian C, Itti L (2007) Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 29(2):300–312

    Article  Google Scholar 

  27. Sinha A, Agarwal G, Anbu A (2004) Region-of-interest based compressed domain video transcoding scheme. In: IEEE international conference on acoustics, speech, and signal processing, vol 3, pp iii–161

  28. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  29. Xu J, Guo X, Tu Q, Li C, Men A (2015) A novel video saliency map detection model in compressed domain. In: MILCOM 2015—2015 IEEE military communications conference, pp 157–162

  30. Zhang Q, Huang N, Yao L, Zhang D, Shan C, Han J (2020) RGB-T salient object detection via fusing multi-level CNN features. IEEE Trans Image Process 29:3321–3335

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by SERB, Government of India under Grant No ECR/2016/000112. We express our sincere gratitude to the Associate Editor and the anonymous reviewers whose insightful reviews and suggestions have helped us in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Okade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandula, P., Okade, M. A novel video saliency estimation method in the compressed domain. Pattern Anal Applic 25, 867–878 (2022). https://doi.org/10.1007/s10044-022-01081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-022-01081-4

Keywords

Navigation