[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Environmental microbiology aided by content-based image analysis

  • Industrial and Commercial Application
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Environmental microorganisms (EMs) such as bacteria and protozoa are found in every imaginable environments. To explore functions of EMs is an important research field for environmental assessment and treatment. However, EMs are traditionally investigated through morphological analysis using microscopes or DNA analysis, which is time and money consuming. To overcome this, we introduce an innovative method which applies content-based image analysis (CBIA) to environmental microbiology. Our method classifies EMs into different categories based on features extracted from microscopic images. Specifically, it consists of three steps: The first is image segmentation which accurately extracts the region of an EM in a microscopic image with a small amount of user interaction. The second step is feature extraction where multiple features are extracted to describe different characteristics of the EM. In particular, we develop an internal structure histogram descriptor which captures the structure of the EM using angles defined on its contour. The last step is fusion which combines classification results by different features to improve the performance. Experimental results validate the effectiveness and practicability of our environmental microbiology method aided by CBIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Amaral A, Baptiste C, Pons M, Nicolau A, Lima N, Ferreira E, Mota M, Vivier H (1999) Semi-automated recognition of protozoa by image analysis. Biotechnol Tech 13(2):111–118

    Article  Google Scholar 

  2. Amaral AL, Motta MD, Pons MN, Vivier H, Roche N, Mota M, Ferreira EC (2004) Survey of protozoa and metazoa populations in wastewater treatment plants by image analysis and discriminant analysis. Environmetrics 15(4):381–390

    Article  Google Scholar 

  3. Bai X, Latecki LJ (2008) Path similarity skeleton graph matching. IEEE Trans Pattern Anal Mach Intell 30(7):1–11

    Article  Google Scholar 

  4. Bernhard D, Leipe DD, Sogin ML, Schlegel KM (1995) Phylogenetic relationships of the Nassulida within the phylum Ciliophora inferred from the complete small subunit rRNA gene sequences of Furgasonia blochmanni, Obertrumia georgiana, and Pseudomicrothorax dubius. J Eukaryot Microbiol 42(2):126–133

    Article  Google Scholar 

  5. Boykov Y, Veksler O, Zabih R (2001) Efficient approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 20(12):1222–1239

    Article  Google Scholar 

  6. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  7. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  8. Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  9. Clark JJ (1989) Authenticating edges produced by zero-crossing algorithms. IEEE Trans Pattern Anal Mach Intell 11(1):43–57

    Article  MATH  Google Scholar 

  10. Das M, Butterworth F, Das R (1996) Statistical signal modeling techniques for automated recognition of water-borne microbial shapes. Proc MWSCAS 1996:613–616

    Google Scholar 

  11. Donoser M, Riemenschneider H, Bischof H (2009) Efficient partial shape matching of outer contours. Proc ACCV 2009:281–292

    Google Scholar 

  12. Drever L, Roa W, McEwan A, Robinson D (2007) Comparison of three image segmentation techniques for target volume delineation in positron emission tomography. J Appl Chin Med Phys 8(2):93–109

    Google Scholar 

  13. Fouladagran MP, Mankki A, Lensu L, Kaeyhkoe J, Kaelviaeinen H (2010) Automated counting and characterization of dirt particles in pulp. Proc ICCVG 2010:166–174

    Google Scholar 

  14. Fried J, Mayr G, Berger H, Traunspurger W, Psenner R, Lemmer H (2000) Monitoring protozoa and metazoa biofilm communities for assessing wastewater quality impact and reactor up-scaling effects. Water Sci Technol 41(4–5):309–316

    Google Scholar 

  15. Ginoris YP, Amaral AL, Nicolau A, Coelho MAZ, Ferreira EC (2007) Recognition of protozoa and metazoa using image analysis tools, discriminant analysis, neural networks and decision trees. Anal Chim Acta 595(1–2):160–169

    Article  Google Scholar 

  16. Gonzalez RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson International Edition, New Jersey

    Google Scholar 

  17. Greenwood SJ, Sogin ML, Lynn DH (1991) Phylogenetic relationships within the class Oligohymenophorea, phylum Ciliophora, inferred from the complete small subunit rRNA gene sequences of Colpidium campylum, Glaucoma chattoni, and Opisthonecta henneguyi. J Mol Evol 33(2):163–174

    Article  Google Scholar 

  18. Guan N, Tao D, Luo Z, Shawe-Taylor J (2012) MahNMF: manhattan non-negative matrix factorization. CoRR. arXiv:1207.3438

  19. He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284

    Article  Google Scholar 

  20. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  21. Jain R, Kasturi R, Schunck BG (1995) Machine Vision. McGraw-Hill Inc, New York

    Google Scholar 

  22. Jia Y, Salzmann M, Darrell T (2010) Factorized latent spaces with structured sparsity. Technical report UCB/EECS-2010-99, Electrical Engineering and Computer Sciences University of California at Berkeley

  23. Jiang Y, Yang J, Ngo C, Hauptmann AG (2010) Representations of keypoint-based semantic concept detection: a comprehensive study. IEEE Trans Multimed 12(1):42–53

    Article  Google Scholar 

  24. Kazakova N, Margala M, Durdle NG (2004) Sobel dege detection processor for a real-time volume rendering system. Proc ISCAS 2004:23–26

    Google Scholar 

  25. Kishida K (2005) Property of average precision and its generalization: an examination of evaluation indicator for information retrieval experiments. Technical report NII-2005-E014E, National Institute of Informatics

  26. Latecki LJ, Lakamper R, Eckhardt T (2000) Shape descriptors for non-rigid shapes with a single closed contour. Proc CVPR 2000:424–429

    Google Scholar 

  27. Lee S, Basu S, Tyler CW, Wei IW (2004) Ciliate populations as bio-indicators at deer island treatment plant. Adv Environ Res 8(3–4):371–378

    Article  Google Scholar 

  28. Li X, Chen C (2009) An improved BP neural network for wastewater bacteria recognition based on microscopic image analysis. WSEAS Trans Comput 8(2):237–247

    Google Scholar 

  29. Lin H, Lin C, Weng RC (2007) A note on Platt’s probabilistic outputs for support vector machines. Mach Learn 68(3):267–276

    Article  Google Scholar 

  30. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  31. Maini R, Sohal JS (2006) Performance evaluation of Prewitt edge detector for noisy images. Int J Gr Vis Image Process 6(3):39–46

    Google Scholar 

  32. Martin-Cereceda M, Perez-Uz B, Serrano S, Guinea A (2001) Dynamics of protozoan and metazoan communities in a full scale wastewater treatment plant by rotating biological contactors. Microbiol Res 156(3):225–238

    Article  Google Scholar 

  33. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2005) A comparison of affine region detectors. Int J Comput Vis 65(1–2):43–72

    Article  Google Scholar 

  34. Neycenssac F (1993) Contrast enhancement using the Laplacian-of-a-Gaussian filter. Gr Models Image Process 55(6):447–463

    Article  Google Scholar 

  35. Nguyen MH, Torresani L, Torre F, Rother C (2009) Weakly supervised discriminative localization and classification: a joint learning process. Proc ICCV 2009:1925–1932

    Google Scholar 

  36. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  37. Park DK, Jeon YS, Won CS (2000) Efficient use of local edge histogram descriptor. In: Proceedings of MM 2000 workshop, pp 51–54

  38. Pepper IL, Gerba CP, Gentry TJ (2014) Environmental microbiology, 3rd edn. Academic Press, San Diego

    Google Scholar 

  39. Roerdink JBTM, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 41(1–2):187–228

    MathSciNet  MATH  Google Scholar 

  40. Rulaningtyas R, Suksmono AB, Mengko TLR (2011) Automatic classification of tuberculosis bacteria using neural network. Proc ICEEI 2011:1–4

    Google Scholar 

  41. Salvado H, Gracia MP, Amigo JM (1995) Capability of ciliated protozoa as indicators of effluent quality in activated sludge plants. Water Res 29(4):1041–1050

    Article  Google Scholar 

  42. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Article  Google Scholar 

  43. Snoek CGM, Worring M, Smeulders AWM (2005) Early versus late fusion in semantic video analysis. Proc MM 2005:399–402

    Google Scholar 

  44. Tang L, Chen J, Ye J (2009) Multiple kernel learning with multiple labels. Proc IJCAI 2009:1255–1266

    Google Scholar 

  45. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  46. White M, Zhang X, Schuurmans D, Yu Y (2012) Convex multi-view subspace learning. Proc NIPS 2012:1673–1681

    Google Scholar 

  47. Xu C, Tao D, Xu C (2013) A survey on multi-view learning. CoRR. arXiv:1304.5634

  48. Xu C, Tao D, Xu C (2014) Large-margin multi-view information bottleneck. IEEE Trans Pattern Anal Mach Intell 36(8):1559–1572

    Article  Google Scholar 

  49. Xu Z, Jin R, Yang H, King I, Lyu MR (2010) Simple and efficient multiple kernel learning by group Lasso. Proc ICML 2010:1175–1182

    Google Scholar 

  50. Yeom S, Moon I, Javidi B (2006) Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms. Proc IEEE 94(3):550–566

    Article  Google Scholar 

  51. Yu J, Rui Y, Tang Y, Tao D (2014) High-order distance-based multiview stochastic learning in image classification. IEEE Trans Cybern 44(12):2431–2442

    Article  Google Scholar 

  52. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  Google Scholar 

  53. Yu J, Tao D, Rui Y, Cheng J (2013) Pairwise constraints based multiview features fusion for scene classification. Pattern Recognit 46(2):483–496

    Article  MATH  Google Scholar 

  54. Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272

    Article  MathSciNet  Google Scholar 

  55. Yu J, Wang M, Tao D (2012) Semisupervised multiview distance metric learning for cartoon synthesis. IEEE Trans Image Process 21(11):4636–4648

    Article  MathSciNet  Google Scholar 

  56. Zhang D, Lu G (2003) A comparative study of curvature scale space and Fourier descriptors for shape-based image retrieval. J Vis Commun Image Represent 14(1):39–57

    Article  Google Scholar 

Download references

Acknowledgments

Research activities leading to this work have been supported by the China Scholarship Council and the Japan Society for the Promotion of Science. We greatly thank Prof. Dr. Beihai Zhou and Dr. Fangshu Ma from the University of Science and Technology Beijing for providing us with image dataset for experiments. Moreover, we are also very grateful to Dr. Joanna Czajkowska, Dipl.-Inform. Christian Feinen, M. A. Cathrin Warnke, Mr. Florian Schmidt and Mr. Oliver Tiebe from the University of Siegen for their guiding on significant technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Shirahama, K. & Grzegorzek, M. Environmental microbiology aided by content-based image analysis. Pattern Anal Applic 19, 531–547 (2016). https://doi.org/10.1007/s10044-015-0498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-015-0498-7

Keywords

Navigation