Abstract
Usually, a large number of reference signatures are required for building the writing style model from offline handwritten signatures (OHSs). Moreover, the existing writer identification systems from OHSs are generally closed systems that require a retraining process when a new writer is added. This paper proposes an open writer identification system from OHSs, based on a new scheme of the one-class symbolic data analysis (OC-SDA) classifier, using few reference signatures. For generating more data, intra-class feature-dissimilarities, generated from curvelet transform, are introduced for building the symbolic representation model (SRM) associated with each writer. Feature-dissimilarities allow capturing more efficiently the intra-personnel variability produced naturally by a writer and, thus, increase the inter-personnel variability. Instead of using the mean and the standard deviation for building the OC-SDA model, intra-class feature-dissimilarities generated for each writer are modeled through a new weighted membership function, inspired from the real probability distribution of training intra-class feature-dissimilarities. The comparative analysis against the state-of-the-art works shows that the proposed OC-SDA classifier outperforms the existing classifiers on three public signature datasets GPDS-300, CEDAR-55 and MCYT-75, using only five reference signatures, achieving 98.31%, 98.06% and 99.89%, respectively, even when a combination of multiple classifiers is performed or even using learned features. Moreover, the evaluation of the proposed writer identification system in front of skilled forgeries shows its ability to detect also possible forged signatures in addition to the genuine ones.
Similar content being viewed by others
References
Alaei, A., Roy, P.P.: A new method for writer identification based on histogram symbolic representation. In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 216–221. IEEE (2014). https://doi.org/10.1109/ICFHR.2014.44
Alaei, A., Pal, S., Pal, U., Blumenstein, M.: An efficient signature verification method based on an interval symbolic representation and a fuzzy similarity measure. IEEE Trans. Inf. Forensics Secur. 12(10), 2360–2372 (2017). https://doi.org/10.1109/TIFS.2017.2707332
Bertolini, D., Oliveira, L.S., Justino, E., Sabourin, R.: Reducing forgeries in writer-independent off-line signature verification through ensemble of classifiers. Pattern Recognit. 43(1), 387–396 (2010). https://doi.org/10.1016/j.patcog.2009.05.009
Boyer, K.W., Govindaraju, V., Ratha, N.K.: Introduction to the special issue on recent advances in biometric systems [guest editorial]. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(5), 1091–1095 (2007)
Çalik, N., Kurban, O.C., Yilmaz, A.R., Yildirim, T., Ata, L.D.: Large-scale offline signature recognition via deep neural networks and feature embedding. Neurocomputing 359, 1–14 (2019). https://doi.org/10.1016/j.neucom.2019.03.027
Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006). https://doi.org/10.1137/05064182X
Candes, E., Donoho, D.: A Surprisingly Effective Non adaptive Representation for Objects with Edges, Curves and Surfaces. Vanderbilt University Press, Nashville (2000)
De Carvalho, D.A.F., de Souza, R.M., Chavent, M., Lechevallier, Y.: Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recognit. Lett. 27(3), 167–179 (2006). https://doi.org/10.1016/j.patrec.2005.08.014
Eskander, G.S., Sabourin, R., Granger, E.: Dissimilarity representation for handwritten signature verification (2013)
Feng, K., Jiang, Z., He, W., Ma, B.: A recognition and novelty detection approach based on curvelet transform, nonlinear PCA and SVM with application to indicator diagram diagnosis. Expert Syst. Appl. 38(10), 12721–12729 (2011). https://doi.org/10.1016/j.eswa.2011.04.060
Foroozandeh, A., Hemmat, A.A., Rabbani, H.: Offline handwritten signature verification and recognition based on deep transfer learning. In: 2020 International Conference on Machine Vision and Image Processing (MVIP), pp. 1–7. IEEE (2020)
Frias-Martinez, E., Sanchez, A., Velez, J.: Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition. Eng. Appl. Artif. Intell. 19(6), 693–704 (2006). https://doi.org/10.1016/j.engappai.2005.12.006
Ghosh, R.: A recurrent neural network based deep learning model for offline signature verification and recognition system. Expert Syst. Appl. 168, 114249 (2021)
Gowda, K.C., Diday, E.: Symbolic clustering using a new dissimilarity measure. Pattern Recognit. 24(6), 567–578 (1991). https://doi.org/10.1016/0031-3203(91)90022-W
Guerbai, Y., Chibani, Y., Hadjadji, B.: The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters. Pattern Recognit. 48(1), 103–113 (2015). https://doi.org/10.1016/j.patcog.2014.07.016
Guru, D., Kiranagi, B.B., Nagabhushan, P.: Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recognit. Lett. 25(10), 1203–1213 (2004). https://doi.org/10.1016/j.patrec.2004.03.016
Hadjadji, B., Chibani, Y., Nemmour, H.: An efficient open system for offline handwritten signature identification based on curvelet transform and one-class principal component analysis. Neurocomputing 265, 66–77 (2017). https://doi.org/10.1016/j.neucom.2017.01.108
Hamadene, A., Chibani, Y.: One-class writer-independent offline signature verification using feature dissimilarity thresholding. IEEE Trans. Inf. Forensics Secur. 11(6), 1226–1238 (2016). https://doi.org/10.1109/TIFS.2016.2521611
Han, K., Sethi, I.K.: Handwritten signature retrieval and identification. Pattern Recognit. Lett. 17(1), 83–90 (1996). https://doi.org/10.1109/ICPR.2000.906232
Hiremath, P., Prabhakar, C.: Symbolic factorial discriminant analysis for face recognition under variable lighting (2006). https://doi.org/10.1142/S021800140800634X
Ismail, M., Gad, S.: Off-line Arabic signature recognition and verification. Pattern Recognit. 33(10), 1727–1740 (2000). https://doi.org/10.1016/S0031-3203(99)00047-3
Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004). https://doi.org/10.1109/TCSVT.2003.818349
Kalera, M.K., Srihari, S., Xu, A.: Offline signature verification and identification using distance statistics. Int. J. Pattern Recognit. Artif. Intell. 18(07), 1339–1360 (2004). https://doi.org/10.1142/S0218001404003630
Kalera, M.K., Srihari, S., Xu, A.: Offline signature verification and identification using distance statistics. Int. J. Pattern Recognit. Artif. Intell. 18(07), 1339–1360 (2004). https://doi.org/10.1142/S0218001404003630
Kumar, R., Sharma, J., Chanda, B.: Writer-independent off-line signature verification using surroundedness feature. Pattern Recognit. Lett. 33(3), 301–308 (2012). https://doi.org/10.1016/j.patrec.2011.10.009
Kumari, K., Rana, S.: Offline signature recognition using deep features. In: Joshi, A. (ed.) Machine Learning for Predictive Analysis, pp. 405–421. Springer, Berlin (2021)
Li, Y., Yang, Q., Jiao, R.: Image compression scheme based on curvelet transform and support vector machine. Expert Syst. Appl. 37(4), 3063–3069 (2010). https://doi.org/10.1016/j.eswa.2009.09.024
Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.-J., Vivaracho, C., et al.: MCYT baseline corpus: a bimodal biometric database. IEE Proc. Vis. Image Signal Process. 150(6), 395–401 (2003). https://doi.org/10.1049/ip-vis:20031078
Pal, S., Alaei, A., Pal, U., Blumenstein, M.: Interval-valued symbolic representation based method for off-line signature verification. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2015). https://doi.org/10.1109/IJCNN.2015.7280518
Pavlidis, I., Papanikolopoulos, N.P., Mavuduru, R.: Signature identification through the use of deformable structures. Signal Process. 71(2), 187–201 (1998). https://doi.org/10.1016/S0165-1684(98)00144-3
Pękalska, E., Duin, R.P.: Dissimilarity representations allow for building good classifiers. Pattern Recognit. Lett. 23(8), 943–956 (2002). https://doi.org/10.1016/S0167-8655(02)00024-7
Prakash, H., Guru, D.: Offline signature verification: an approach based on score level fusion. Int. J. Comput. Appl. 10(1), 52–58 (2010). https://doi.org/10.5120/383-573
Rajaei, A., Dallalzadeh, E., Rangarajan, L.: Symbolic representation and classification of medical X-ray images. Signal Image Video Process. 9(3), 715–725 (2015). https://doi.org/10.1007/s11760-013-0486-6
Riba, J.R., Carnicer, A., Vallmitjana, S., Juvells, I.: Methods for invariant signature classification. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 2, pp. 953–956. IEEE (2000). https://doi.org/10.1109/ICPR.2000.906232
Santos, C., Justino, E.J., Bortolozzi, F., Sabourin, R.: An off-line signature verification method based on the questioned document expert’s approach and a neural network classifier. In: Ninth International Workshop on Frontiers in Handwriting Recognition, pp. 498–502. IEEE (2004). https://doi.org/10.1109/IWFHR.2004.17
Sigari, M.H., Pourshahabi, M.R., Pourreza, H.R.: Offline handwritten signature identification and verification using multi-resolution Gabor wavelet. Int. J. Biometr. Bioinform. (IJBB) 5(4), 234–248 (2011)
Srihari, S.N., Xu, A., Kalera, M.K.: Learning strategies and classification methods for off-line signature verification. In: Ninth International Workshop on Frontiers in Handwriting Recognition, pp. 161–166. IEEE (2004). https://doi.org/10.1109/IWFHR.2004.61
Vargas, F., Ferrer, M., Travieso, C., Alonso, J.: Off-line handwritten signature GPDS-960 corpus. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 764–768. IEEE (2007). https://doi.org/10.1109/ICDAR.2007.4377018
Vikram, T., Gowda, K.C., Urs, S.R.: Symbolic representation of kannada characters for recognition. In: 2008 IEEE International Conference on Networking, Sensing and Control, pp. 823–826. IEEE (2008). https://doi.org/10.1109/ICNSC.2008.4525329
Villager, C., Dittmann, J.: Biometrics for User Authentication, pp. 35–44. Springer US, Boston (2006). https://doi.org/10.1007/0-387-30038-4
Acknowledgements
This work was supported by the Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT) Grant, attached to the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Djoudjai, M.A., Chibani, Y. Open writer identification from offline handwritten signatures by jointing the one-class symbolic data analysis classifier and feature-dissimilarities. IJDAR 26, 15–31 (2023). https://doi.org/10.1007/s10032-022-00403-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10032-022-00403-w