[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A pseudo-skeletonization algorithm for static handwritten scripts

  • Original Paper
  • Published:
International Journal of Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

This paper describes a skeletonization approach that has desirable characteristics for the analysis of static handwritten scripts. We concentrate on the situation where one is interested in recovering the parametric curve that produces the script. Using Delaunay tessellation techniques where static images are partitioned into sub-shapes, typical skeletonization artifacts are removed, and regions with a high density of line intersections are identified. An evaluation protocol, measuring the efficacy of our approach is described. Although this approach is particularly useful as a pre-processing step for algorithms that estimate the pen trajectories of static signatures, it can also be applied to other static handwriting recognition techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam L., Suen C.Y.: An evaluation of parallel thinning algorithms for character-recognition. IEEE Trans. Pattern Anal. Mach. Intell. 17(9), 914–919 (1995)

    Article  Google Scholar 

  2. Stheinherz, N.I.T.: A special skeletonization algorithm for cursive words. In: Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition, International Unipen Foundation, pp. 529–534 (2000)

  3. Dawoud, A., Kamel, M.: New approach for the skeletonization of handwritten characters in gray-scale images. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1233–1237 (2003)

  4. Wen M., Fan K., Han C.: Classification of chinese characters using pseudo skeleton features. J. Inf. Sci. Eng. 20, 903–922 (2004)

    Google Scholar 

  5. Kegl B., Krzyzak A.: Piecewise linear skeletonization using Principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 59–74 (2002)

    Article  Google Scholar 

  6. Ahmed M., Ward R.: A rotation invariant rule-based thinning algorithm for character recognition. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1672–1678 (2002)

    Article  Google Scholar 

  7. Zou J.J., Yan H.: Skeletonization of ribbon-like shapes based on regularity and singularity analysis. IEEE Trans. Syst. Man Cybern. B 31(3), 401–407 (2001)

    Article  Google Scholar 

  8. Zou J.J., Yan H.: Vectorization of cartoon drawings. In: Eades, P., Jin, J. (eds) Selected Papers from Pan-Sydney Workshop on Visual Information Processing, ACS, Sydney (2001)

    Google Scholar 

  9. Tang Y.Y., You X.: Skeletonization of ribbon-like shapes based on a new wavelet function. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1118–1133 (2003)

    Article  Google Scholar 

  10. Chiang J.Y., Tue S.C., Leu Y.C.: A new algorithm for line image vectorization. Pattern Recognit. 31(10), 1541–1549 (1998)

    Article  Google Scholar 

  11. Nel E., Du Preez J.A., Herbst B.M.: Estimating the pen trajectories of static signatures using hidden Markov models. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1733–1746 (2005)

    Article  Google Scholar 

  12. Nel, E., Du Preez, J.A., Herbst, B.M.: Estimating the pen trajectories of static scripts using hidden Markov models. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 41–47 (2005)

  13. Nel E., Du Preez J.A., Herbst B.M.: Verification of dynamic curves extracted from static handwritten scripts. Pattern Recognit. 14, 3773–3785 (2008)

    Article  Google Scholar 

  14. Pan, J.C., Lee, S.: Offline tracing and representation of signatures. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 679–680 (1991)

  15. Lee S., Pan J.C.: Offline tracing and representation of signatures. IEEE Trans. Syst. Man Cybernet. 22(4), 755–771 (1992)

    Article  MATH  Google Scholar 

  16. Lallican, P.M., Viard-Gaudin, C.: A Kalman approach for stroke order recovering from off-line handwriting. In: Proceedings of the International Conference on Document Analysis and Recognition, IEEE Computer Society, pp. 519–523 (1997)

  17. Chang H., Yan H.: Analysis of stroke structures of handwritten chinese characters. IEEE Trans. Syst. Man Cybernet. B 29(1), 47–61 (1999)

    Article  Google Scholar 

  18. Kato Y., Yasuhara M.: Recovery of drawing order from single-stroke handwriting images. IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 938–949 (2000)

    Article  Google Scholar 

  19. Guo J.K., Doerman D., Rosenfeld A.: Forgery detection by local correspondence. Int. J. Pattern Recognit. Artif. Intell. 15(4), 579–641 (2001)

    Article  Google Scholar 

  20. Plamondon R., Maarse F.J.: An evaluation of motor models of handwriting. IEEE Trans. Syst. Man Cybernet. B 19(5), 1060–1072 (1989)

    Article  Google Scholar 

  21. Boccignone G., Chianese A., Cordella L.P., Marcelli A.: Recovering dynamic information from static handwriting. Pattern Recognit. 26(3), 409–418 (1993)

    Article  Google Scholar 

  22. Jäger, S.: A psychomotor method for tracking handwriting. In: Proceedings of the International Conference on Document Analysis and Recognition, IEEE Computer Society, pp. 528–531 (1997)

  23. Govindaraju, V., Srihari, S.: Separating handwritten text from overlapping non-textual contours. In: International Workshop on Frontiers in Handwriting Recognition, pp. 111–119 (1991)

  24. Doermann, D., Rosenfeld, A.: Recovery of temporal information from static images of handwriting. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 162–168 (1992)

  25. Doermann D.S., Rosenfeld A.: Recovery of temporal information from static images of handwriting. Int. J. Comput. Vis. 15, 143–164 (1995)

    Article  Google Scholar 

  26. Doermann, D., Rosenfeld, A.: The interpretation and reconstruction of interfering strokes. In: Frontiers in Handwriting Recognition, pp. 41–50 (1993)

  27. Lam L., Lee S., Suen C.Y.: Thinning methodologies-a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  28. Gonzalez R.C., Woods R.E.: Digital Image Processing. Addison-Wesley, Reading (1992)

    Google Scholar 

  29. Seul M., O’Gorman L., Sammon M.S.: Practical Algorithms for Image Analysis: Description, Examples, and Code. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  30. Gonzalez R.C., Woods R.E., Eddins S.L.: Digital Image Processing using Matlab. Pearson Prentice Hall, New York (2004)

    Google Scholar 

  31. Verwer B., van Vliet L., Verbeek P.: Binary and grey-value skeletons: Metrics and algorithms. Int. J. Pattern Recognit. Artif. Intell. 7(5), 1287–1308 (1993)

    Article  Google Scholar 

  32. Lam L., Suen C.Y.: Automatic comparison of skeletons by shape matching methods. Int. J. Pattern Recognit. Artif. Intell. 7(5), 1271–1286 (1993)

    Article  Google Scholar 

  33. Fan K., Chen D., Wen M.: Skeletonization of binary images with nonuniform width via block decomposition and contour vector matching. Pattern Recognit. 31(7), 823–838 (1998)

    Article  Google Scholar 

  34. Rocha J.: Perceptually stable regions for arbitrary polygons. IEEE Trans. Syst. Man Cybernet. B 33(1), 165–171 (2003)

    Article  Google Scholar 

  35. Plamondon R., Suen C., Bourdeau M., Barriere C.: Methodologies for evaluating thinning algorithms for character recognition. Int. J. Pattern Recognit. Artif. Intell. 7, 1247–1270 (1993)

    Article  Google Scholar 

  36. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry Algorithms and Applications, 2nd edn Springer, Berlin (1997)

  37. Martinez T., Schulten K.: Topology representing networks. Neural Netw. 7(3), 507–522 (1994)

    Article  Google Scholar 

  38. Sedgewick R.: Algorithms. Addison-Wesley, Reading (1946)

    Google Scholar 

  39. Dolfing, J.G.A.: Handwriting recognition and verification: a hidden Markov approach. Ph.D. thesis, Eindhoven, Netherlands (1998)

  40. Van Oosterhout, J.J.G.M., Dolfing, J.G.A., Aarts, E.H.L.: On-line signature verification with hidden Markov models. In: Proceedings of the International Conference on Pattern Recognition, pp. 1309–1312 (1998)

  41. Coetzer, J.: Off-line signature verification, Ph.D. thesis, Stellenbosch University Press (2005)

  42. Tukey J.W.: Exploratory Data Analysis, pp. 46–47. Addison- Wesley, Reading (1977)

    MATH  Google Scholar 

  43. Chaikin G.: An algorithm for high speed curve generation. Comput. Vis. Gr. Image Process. 3, 346–349 (1974)

    Article  Google Scholar 

  44. Lane J.M., Riesenfeld R.F.: A theoretical development for the computer generation of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 34–46 (1980)

    Article  Google Scholar 

  45. Nel, E., Du Preez, J.A., Herbst, B.M.: www.ussigbase.org

  46. Lallican, P.M., Viard-Gaudin, C., Knerr, S., Binter, P.: The IRESTE ON-OFF (IRONOFF) handwritten image database. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 455–458 (1999)

  47. Smith E.: Characterization of image degradation caused by scanning. Pattern Recognit. Lett. 19(13), 1191–1197 (1998)

    Article  MATH  Google Scholar 

  48. Zhou J.Y., Lopresti D., Sarkar P., Nagy G.: Spatial Sampling Effects on Scanned 2-D Patterns. World Scientific, Singapore (1997)

    Google Scholar 

  49. Smith, E.H.B.: Scanner parameter estimation using bilevel scans of star charts. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 1164–1168 (2001)

  50. Deller J.R., Hansen J.H.L., Proakis J.G.: Discrete-Time Processing of Speech Signals. IEEE Press, New York (2000)

    Google Scholar 

  51. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Magazine pp. 4–16 (1986)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emli-Mari Nel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nel, EM., du Preez, J.A. & Herbst, B.M. A pseudo-skeletonization algorithm for static handwritten scripts. IJDAR 12, 47–62 (2009). https://doi.org/10.1007/s10032-009-0082-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-009-0082-z

Keywords

Navigation