[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

An adhesive elasto-plastic contact model for the discrete element method with three dimensional non-spherical particles is proposed and investigated to achieve quantitative prediction of cohesive powder flowability. Simulations have been performed for uniaxial consolidation followed by unconfined compression to failure using this model. The model has been shown to be capable of predicting the experimental flow function (unconfined compressive strength vs. the prior consolidation stress) for a limestone powder which has been selected as a reference solid in the Europe wide PARDEM research network. Contact plasticity in the model is shown to affect the flowability significantly and is thus essential for producing satisfactory computations of the behaviour of a cohesive granular material. The model predicts a linear relationship between a normalized unconfined compressive strength and the product of coordination number and solid fraction. This linear relationship is in line with the Rumpf model for the tensile strength of particulate agglomerate. Even when the contact adhesion is forced to remain constant, the increasing unconfined strength arising from stress consolidation is still predicted, which has its origin in the contact plasticity leading to microstructural evolution of the coordination number. The filled porosity is predicted to increase as the contact adhesion increases. Under confined compression, the porosity reduces more gradually for the load-dependent adhesion compared to constant adhesion. It was found that the contribution of adhesive force to the limiting friction has a significant effect on the bulk unconfined strength. The results provide new insights and propose a micromechanical based measure for characterising the strength and flowability of cohesive granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\(\mathrm d \) :

Particle diameter (m)

\(d_{avg}\) :

Average particle diameter (m)

\(e\) :

Co-efficient of restitution

\(g\) :

Gravitational constant \((\hbox {m/s}^{2})\)

\(m^{*}\) :

Equivalent mass of the particles (kg)

\(N\) :

Number of particles

\(n\) :

Non-linear index parameter

\(P\) :

Pressure (kPa)

u :

Unit normal vector

\(Z\) :

Coordination number at peak

Zi :

Instantaneous coordination number

\(F_{at}\) :

Average adhesive strength at contact (N)

\(f_{0}\) :

Constant adhesive strength at first contact (N)

\(f_{\mathrm{t}}\) :

Contact tangential force (N)

\(f_{\mathrm{ct}}\) :

Coulomb limiting tangential force (N)

\(f_{\mathrm{nd}}\) :

Normal damping force (N)

\(f_{i}^{c}\) :

Contact force (N)

\(f_{atp}\) :

Average tensile force at the peak (N)

\(f_{\mathrm{ts}}\) :

Tangential spring force (N)

\(f_{\mathrm{td}}\) :

Tangential damping force (N)

\(f_{\mathrm{hys}}\) :

Hysteretic spring force (N)

\(f_{\mathrm{ts(n-1)}}\) :

Tangential spring force at previous time step (N)

\(I_{i}\) :

Moment of inertia \((\hbox {m}^{4})\)

\(l_{i}^{c}\) :

Vector from centre of particle to the contact point

\(k_{1}\) :

Loading stiffness parameter (kN/m)

\(k_{2}\) :

Unloading/reloading stiffness parameter (kN/m)

\(k_{\mathrm{adh}}\) :

Adhesive stiffness parameter (kN/m)

\(k_{\mathrm{t}}\) :

Tangential stiffness (kN/m)

\(\varvec{\nu }_{\mathbf{t}}\) :

Relative tangential velocity (m/s)

\(\nu _{\mathrm{n}}\) :

Magnitude of relative normal velocity (m/s)

\(\upsigma _{\mathrm{u}}\) :

Unconfined yield strength (kPa)

\(\upsigma _{\mathrm{a}}\) :

Axial stress (kPa)

\(\upsigma _{\mathrm{t}}\) :

Bulk tensile strength (kPa)

\(\sigma _{1}\) :

Axial consolidation stress (kPa)

\(\rho \) :

Particle density \((\hbox {kg/m}^{3})\)

\(\upvarepsilon \) :

Total bulk deformation

\(\upvarepsilon _{\mathrm{a}}\) :

Bulk axial strain

\(\upvarepsilon _{\mathrm{p}}\) :

Total plastic deformation

\(\beta _{\mathrm{n}}\) :

Normal dashpot co-efficient

\(\beta _{\mathrm{t}}\) :

Tangential dashpot coefficient

\(\phi \) :

Angle of friction \((^{\circ })\)

\(\Delta f_{\mathrm{ts}}\) :

Incremental tangential force (N)

\(\delta \) :

Total normal overlap (m)

\(\delta _{\max }\) :

Maximum normal overlap (m)

\(\delta _{\mathrm{p}}\) :

Plastic overlap (m)

\(\upeta \) :

Sample bulk porosity

\(\upeta _{\mathrm{c}}\) :

Consolidated bulk porosity

\(\upeta _{\mathrm{f}}\) :

Fill porosity

\(\mu \) :

Co-efficient of friction

\(\mu _{\mathrm{r}}\) :

Coefficient of rolling friction

\(\tau _{i}\) :

Total applied torque (N m)

\(\omega _{i}\) :

Unit angular velocity vector (radian/s)

\(\uplambda _{p}\) :

Contact plasticity

\(\lambda _{b}\) :

Bulk plasticity

\(\dot{\gamma }\) :

Shear rate

References

  1. Nedderman, R.M.: Statics and Kinematics of Granular Materials. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  2. Jenike, A.W.: Storage and flow of solids, bulletin no. 123. Bull. Univ. Utah 53(26) (1964)

  3. Carr, J.F., Walker, D.M.: An annular shear cell for granular materials. Powder Technol. 1(6), 369–373 (1968)

  4. Schulze, D.: A new ring shear tester for flowability and time consolidation measurements. In: 1st International Particle Technology Forum, pp. 11–16, Denver, CO, USA (1994)

  5. Bell, T.A., Catalano, E.J., Zhong, Z., Ooi, J.Y., Rotter, J.M.: Evaluation of the Edinburgh powder tester. In: Proceedings of the PARTEC, pp. 2–6 (2007)

  6. Enstad, G., Ose, S.: Uniaxial testing and the performance of a pallet press. Chem. Eng. Technol. 26, 171–176 (2003)

    Article  Google Scholar 

  7. Freeman, R., Fu, X.: The development of a compact uniaxial tester. In: Part. Sci. Anal. Edinburgh, UK, pp. 1–6 (2011)

  8. Parrella, L., Barletta, D., Boerefijn, R., Poletto, M.: Comparison between a uniaxial compaction tester and a shear tester for the characterization of powder flowability. KONA Powder Particle J. 26, 178–189 (2008)

    Article  Google Scholar 

  9. Röck, M., Ostendorf, M., Schwedes, J.: Development of an uniaxial caking tester. Chem. Eng. Technol. 29, 679–685 (2006)

    Article  Google Scholar 

  10. Williams, J.C., Birks, A.H., Bhattacharya, D.: The direct measurement of the failure of a cohesive powder. Powder Tech. 4, 328–337 (1971)

    Article  Google Scholar 

  11. Zhong, Z., Ooi, J.Y., Rotter, J.M.: Predicting the handlability of a coal blend from measurements on the source coals. Fuel 84, 2267–2274 (2005)

    Article  Google Scholar 

  12. Derjaguin, B., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    Article  Google Scholar 

  13. Gilabert, F.A., Roux, J.N., Castellanos, A.: Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys. Rev. E. 75, 011303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A. Math. Phys. Sci. 324, 301 (1971)

    Article  ADS  Google Scholar 

  15. Luding, S.: Cohesive, frictional powders: contact models for tension. Granul. Matter. 10, 235–246 (2008)

    Article  MATH  Google Scholar 

  16. Thornton, C., Ning, Z.: A theoretical model for the stick/bounce behaviour of adhesive, elastic–plastic spheres. Powder Technol. 99, 154–162 (1998)

    Article  Google Scholar 

  17. Tomas, J.: Mechanics of nanoparticle adhesion—a continuum approach. Part. Surfaces. 8, 183–229 (2003)

    Google Scholar 

  18. Walton, O.R., Johnson, S.M.: DEM Simulations of the effects of particleshape, interparticle cohesion, and gravity on rotating drum flows of lunar regolith. In: Earth and Space, Honolulu, Hawaii, pp. 1–6 (2010)

  19. Molerus, O.: Theory of yield of cohesive powders. Powder Technol. 12, 259–275 (1975)

    Article  Google Scholar 

  20. Brilliantov, N., Albers, N., Spahn, F., Pöschel, T.: Collision dynamics of granular particles with adhesion. Phys. Rev. E. 76, 051302 (2007)

    Article  ADS  Google Scholar 

  21. Matuttis, H., Schinner, A.: Particle simulation of cohesive granular materials. Int. J. Mod. Phys. C. 12, 1011–1021 (2001)

    Article  ADS  Google Scholar 

  22. Tomas, J.: Adhesion of ultrafine particles—a micromechanical approach. Chem. Eng. Sci. 62, 1997–2010 (2007)

    Article  Google Scholar 

  23. Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949–980 (1986)

    Article  ADS  Google Scholar 

  24. Ning, Z., Thornton, C.: Elastic–plastic impact of fine particles with a surface. In: Powders and Grains, pp. 33–38 (1993)

  25. Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 110 (1881)

    Google Scholar 

  26. Vu-Quoc, L., Zhang, X.: An elastoplastic contact force-displacement model in the normal direction: displacement-driven version, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 455, 4013–4044 (1999)

    MATH  Google Scholar 

  27. Thornton, C.: Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech. 64, 383–386 (1997)

  28. Walton, O.R., Johnson, S.M.: Simulating the effects of interparticle cohesion in micron-scale powders. In: AIP Conference on Proceedings, Golden, CO, pp. 897–900 (2009)

  29. Tomas, J.: Assessment of mechanical properties of cohesive particulate solids. Part 1: particle contact constitutive model. Part. Sci. Technol. 19, 95–110 (2001)

    Article  Google Scholar 

  30. Tomas, J.: Particle Adhesion Fundamentals and Bulk Powder Consolidation, Kona (2000)

  31. Tykhoniuk, R., Tomas, J., Luding, S., Kappl, M., Heim, L., Butt, H.-J.: Ultrafine cohesive powders: from interparticle contacts to continuum behaviour. Chem. Eng. Sci. 62, 2843–2864 (2007)

    Article  Google Scholar 

  32. Luding, S., Tykhoniuk, R., Tomas, J.: Anisotropic material behavior in dense, cohesive-frictional powders. Chem. Eng. Technol. 26, 1229–1232 (2003)

    Article  Google Scholar 

  33. Luding, S., Manetsberger, K., Mullers, J.: A discrete model for long time sintering. J. Mech. Phys. Solids. 53, 455–491 (2005)

    Article  ADS  MATH  Google Scholar 

  34. Moreno-atanasio, R., Antony, S.J., Ghadiri, M.: Analysis of flowability of cohesive powders using distinct element method. Powder Technol. 158, 51–57 (2005)

    Article  Google Scholar 

  35. Hassanpour, A., Ghadiri, M.: Characterisation of flowability of loosely compacted cohesive powders by indentation. Part. Part. Syst. Charact. 24, 117–123 (2007)

    Article  Google Scholar 

  36. Aoki, R., Suzuki, M.: Effect of particle shape on the flow and packing properties of non-cohesive granular materials. Powder Technol. 4(2), 102–104 (1971)

  37. Li, J., Langston, P.A., Webb, C., Dyakowski, T.: Flow of sphero-disc particles in rectangular hoppers—a DEM and experimental comparison in 3D. Chem. Eng. Sci. 59, 5917–5929 (2004)

    Article  Google Scholar 

  38. Roberts, T.A., Beddow, J.K.: Some effects of particle shape and size upon blinding during sieving. Powder Technol. 2, 121–124 (1968)

    Article  Google Scholar 

  39. Chong, Y.S., Ratkowsky, D.A., Epstein, N.: Effect of particle shape on hindered settling in creeping flow. Powder Technol. 23, 55–66 (1979)

    Article  Google Scholar 

  40. Wensrich, C.M., Katterfeld, A.: Rolling friction as a technique for modelling particle shape in DEM. Powder Technol. 217, 409–417 (2012)

    Article  Google Scholar 

  41. Cleary, P.W.: DEM prediction of industrial and geophysical particle flows. Particuology 8, 106–118 (2010)

    Article  Google Scholar 

  42. Favier, J.F., Abbaspour-Fard, M.H., Kremmer, M., Raji, A.O.: Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles. Eng. Comput. 16, 467–480 (1999)

    Article  MATH  Google Scholar 

  43. Härtl, J., Ooi, J.Y.: Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granul. Matter. 10, 263–271 (2008)

    Article  MATH  Google Scholar 

  44. Chung, Y.C., Ooi, J.Y.: Confined compression and rod penetration of a dense granular medium? Discrete. In: Modern Trends in Geomechanics, pp. 223–239 (2006)

  45. Thakur, S.C., Ahmadian, H., Sun, J., Ooi, J.Y.: An experimental and numerical study of packing, compression, and caking behaviour of detergent powders. Particuology 12, 2–12 (2014)

    Article  Google Scholar 

  46. Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Force model considerations for glued-sphere discrete element method simulations. Chem. Eng. Sci. 64, 3466–3475 (2009)

    Article  Google Scholar 

  47. Kruggel-Emden, H., Rickelt, S., Wirtz, S., Scherer, V.: A study on the validity of the multi-sphere discrete element method. Powder Technol. 188, 153–165 (2008)

    Article  Google Scholar 

  48. Jones, R.: Inter-particle forces in cohesive powders studied by AFM: effects of relative humidity, particle size and wall adhesion. Powder Technol. 132, 196–210 (2003)

    Article  Google Scholar 

  49. Cundall, P.A., Strack, D.L.: A discrete numerical model for granular assemblies. Geotechnique 1, 47–65 (1979)

    Article  Google Scholar 

  50. Rayleigh, L.: On waves propagated along the plane surface of an elastic solid. Proc. Lond. Math. Soc. 4,4–11 (1885)

  51. Thornton, C., Randall, C.W.: Micromechanics of granular materials. Appl. Theor. Contact Mech. Solid Part. Syst. Simul. 133, 245–252 (1988)

  52. Sheng, Y., Lawrence, C.J., Briscoe, B.J., Thornton, C.: Numerical studies of uniaxial powder compaction process by 3D DEM. Eng. Comput. 21, 304–317 (2004)

    Article  MATH  Google Scholar 

  53. Jones, R.: From single particle AFM studies of adhesion and friction to bulk flow: forging the links. Granul. Matter. 4, 191–204 (2003)

    Article  ADS  Google Scholar 

  54. Morrissey, J.P.: Discrete Element Modelling of Iron Ore Pellets to Include the Effects of Moisture and Fines, Doctoral dissertation, University of Edinburgh (2013)

  55. DEM Solutions: EDEM 2.3 User Guide, Edinburgh, Scotland, UK (2010)

  56. Skinner, J., Gane, N.: Sliding friction under a negative load. J. Phys. D. Appl. Phys. 5, 2087 (1972)

    Article  ADS  Google Scholar 

  57. Savkoor, A., Briggs, G.: The effect of tangential force on the contact of elastic solids in adhesion. Proc. R. Soc. Lond. A. Math. Phys. Sci. 356, 103–114 (1977)

    Article  ADS  MATH  Google Scholar 

  58. Thornton, C., Yin, K.: Impact of elastic spheres with and without adhesion. Powder Technol. 65, 153–166 (1991)

    Article  Google Scholar 

  59. Briscoe, B., Kremnitzer, S.L.: A study of the friction and adhesion of polyethylene-terephthalate monofilaments. J. Phys. D Appl. 12(4),505 (1979)

  60. Jones, R., Pollock, H.M., Geldart, D., Verlinden-Luts, A.: Frictional forces between cohesive powder particles studied by AFM. Ultramicroscopy 100, 59–78 (2004)

    Article  Google Scholar 

  61. Ruths, M., Alcantar, N.A., Israelachvili, J.N.: Boundary Friction of Aromatic Silane Self-Assembled Monolayers Measured with the Surface Forces Apparatus and Friction Force Microscopy, Society, pp. 11149–11157 (2003)

  62. Berman, A., Drummond, C., Israelachvili, J.: Amontons’ law at the molecular level. Tribol. Lett. 4, 95–101 (1998)

    Article  Google Scholar 

  63. Schwarz, U.D., Zwörner, O., Köster, P., Wiesendanger, R.: Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds. Phys. Rev. B. 56, 6987 (1997)

    Article  ADS  Google Scholar 

  64. Ecke, S.: Friction between individual microcontacts. J. Colloid Interface Sci. 244, 432–435 (2001)

    Article  Google Scholar 

  65. Heim, L., Farschi, M., Morgeneyer, M., Schwedes, J., Butt, H.J., Kappl, M.: Adhesion of carbonyl iron powder particles studied by atomic force microscopy. J. Adhes. Sci. Technol. 19, 199–213 (2005)

    Article  Google Scholar 

  66. Watanabe, H., Groves, W.L.: Caking test for dried detergents. J. Am. Oil Chem. Soc. 41, 311–315 (1964)

    Article  Google Scholar 

  67. Chung, Y.: Discrete Element Modelling and Experimental Validation of a Granular Solid Subject to Different Loading Conditions. The University of Edinburgh. PhD dissertation (2006)

  68. Härtl, J., Ooi, J.Y.: Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments. Powder Technol. 212, 231–239 (2011)

    Article  Google Scholar 

  69. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E. Soft Matter. 14, 341–65 (2004)

    Article  Google Scholar 

  70. DEM Solutions Ltd.: EDEM 2.4 Theory Reference Guide, Edinburgh, Scotland, UK (2011)

  71. Luding, S., Alonso-Marroquin, F.: The critical-state yield stress (termination locus) of adhesive powders from a single numerical experiment. Granul. Matter. 13, 109–119 (2011)

    Article  Google Scholar 

  72. Hiestand, E.N.: Principles, tenets and notions of tablet bonding and measurements of strength. Eur. J. Pharm. 44 (1997)

  73. Schofield, A., Wroth, P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  74. Wood, D.M.: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  75. Yang, R.Y., Zou, R.P., Yu, A.B.: Computer simulation of the packing of fine particles. Phys. Rev. E. 62, 3900–3908 (2000)

  76. Rumpf, H.: The strength of granules and agglomerate. In: Knepper, W. (ed.) Agglomeration. Wiley, New York (1962)

  77. Quintanilla, M.A.S., Castellanos, A., Valverde, J.: Correlation between bulk stresses and interparticle contact forces in fine powders. Phys. Rev. E. 64, 1–9 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The support of the European Commission under the Marie Curie Initial Training Network for the PARDEM Project is gratefully acknowledged. The authors would also like to thank Prof. Stefan Luding and Dr. Hossein Ahmadian for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Thakur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S.C., Morrissey, J.P., Sun, J. et al. Micromechanical analysis of cohesive granular materials using the discrete element method with an adhesive elasto-plastic contact model. Granular Matter 16, 383–400 (2014). https://doi.org/10.1007/s10035-014-0506-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0506-4

Keywords

Navigation