[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Understanding of superorganisms: collective behavior, differentiation and social organization

  • Invited Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

Most animal species spend their lives in a form based on the unit of “an individual” that is a sophisticated multicellular closed unit with various biological functions. Although the system of an animal individual seems to be perfect, individuals belonging to some animal lineages constitute higher-dimensional units, i.e., colonies, that consist of multiple individuals of the same species, performing divisions of labors among them. Those animals include eusocial insects and colonial animals, and their colonies are also known as “superorganisms”, since a colony behave as a single individual. Recent molecular and genomic/transcriptomic studies have been revealing the regulatory mechanisms underlying the integrated systems of superorganisms although many aspects have yet to be elucidated. In this article, life patterns of superorganisms in some animals are introduced, together with recent research advances on the mechanisms. Furthermore, animal species that show distinctive developmental systems such as abnormal asexual reproduction are also focused, since those developmental patterns are deviated from the concept of normal animal “individuality”. Furthermore, synthetic approaches based on robotics and mathematical modeling, focusing on novel robotic systems that can self-organize various non-trivial macroscopic functionalities as observed in superorganisms, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bonner JT (1998) The origins of multicellularity. Integ Biol 1:27–36

    Article  Google Scholar 

  2. Szathmary E, Maynard Smith J (1995) The major evolutionary transitions. Nature 374:227–232

    Article  Google Scholar 

  3. Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    Article  Google Scholar 

  4. Maynard Smith J, Szathmary E (1997) The major transitions in evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  5. Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  6. Boomsma JJ, Gawne R (2018) Superorganismality and caste differentiation as points of no return: how the major evolutionary transitions were lost in translation. Biol Rev 93:28–54

    Article  Google Scholar 

  7. Queller DC (2016) The theory of inclusive fitness. Quart Rev Biol 91:343–347

    Article  Google Scholar 

  8. Wheeler WM (1911) The ant-colony as an organism. J Morphol 22:307–325

    Article  Google Scholar 

  9. Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance, and strangeness of insect societies. WW Norton & Company, New York

    Google Scholar 

  10. Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2013) Superorganisms and holobionts. Microbe 8:152–153

    Google Scholar 

  11. Satz H (2020) The rules of the flock: self-organization and swarm structures in animal societies. Oxford University Press, Oxford

    Book  Google Scholar 

  12. Saito D, Maruyama N, Hashimoto Y, Ikegami T (2020) Visualization of dynamic structure in flocking behavior. Artif Life Robot 25:544–551

    Article  Google Scholar 

  13. Loreau M (2020) The ecosystem: superorganism, or collection of individuals? In: Dobson A, Tilman D, Holt RD (eds) Unsolved problems in ecology. Princeton University Press, Princeton, pp 218–224

    Chapter  Google Scholar 

  14. Wilson DS, Sober E (1989) Reviving the superorganism. J Theor Biol 136(3):337–356

    Article  Google Scholar 

  15. Miura T, Maekawa K (2020) The making of the defensive caste: Physiology, development, and evolution of the soldier differentiation in termites. Evol Dev 22:e12335

    Article  Google Scholar 

  16. Wilson EO (1975) Sociobiology: the new synthesis. Harvard University Press, Cambridge

    Google Scholar 

  17. Michener CD (1969) Comparative social behavior of bees. Annu Rev Entomol 14:299–342

    Article  Google Scholar 

  18. Crespi BJ, Yanega D (1995) The definition of eusociality. Behav Ecol 6:109–115

    Article  Google Scholar 

  19. Duffy JE (1996) Eusociality in a coral-reef shrimp. Nature 381:512–514

    Article  Google Scholar 

  20. Jarvis J (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212:571–573

    Article  Google Scholar 

  21. Hamilton WD (1964) The genetical evolution of social behaviour I and II. J Theor Biol 7(1–16):17–52

    Article  Google Scholar 

  22. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15

    Article  Google Scholar 

  23. Robinson GE, Grozinger CM, Whitfield CW (2005) Sociogenomics: social life in molecular terms. Nat Rev Genet 6:257–270

    Article  Google Scholar 

  24. Miura T, Kamikouchi A, Sawata M, Takeuchi H, Natori S, Kubo T, Matsumoto T (1999) Soldier caste-specific gene expression in the mandibular glands of Hodotermopsis japonica (Isoptera: Termopsidae). Proc Natl Acad Sci USA 96:13874–13879

    Article  Google Scholar 

  25. Toga K, Hojo M, Miura T, Maekawa K (2012) Expression and function of a limb-patterning gene Distal-less in the soldier-specific morphogenesis in the nasute termite Nasutitermes takasagoensis. Evol Dev 14:286–295

    Article  Google Scholar 

  26. Sugime Y, Oguchi K, Gotoh H, Hayashi Y, Matsunami M, Shigenobu S, Koshikawa S, Miura T (2019) Termite soldier mandibles are elongated by dachshund under hormonal and Hox gene controls. Development 146:dev171942

    Article  Google Scholar 

  27. Miura T (2005) Developmental regulation of caste-specific characters in social-insect polyphenism. Evol Dev 7:122–129

    Article  Google Scholar 

  28. Miura T (2019) Juvenile hormone as a physiological regulator mediating phenotypic plasticity in pancrustaceans. Dev Growth Diffr 61:85–96

    Article  Google Scholar 

  29. Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18

    Article  Google Scholar 

  30. Noirot C (1969) Formation of castes in the higher termites. In: Krishna K, Weesner FM (eds) Biology of termites I. Academic Press, Cambridge, pp 311–350

    Chapter  Google Scholar 

  31. Weesner FM (1969) External anatomy. In: Krishna K, Weesner FM (eds) Biology of termites I. Academic Press, Cambridge, pp 19–48

    Chapter  Google Scholar 

  32. Watanabe D, Gotoh H, Miura T, Maekawa K (2011) Soldier presence suppresses differentiaiton through a rapid decrease of JH in the termite Reticulitermes speratus. J Insect Physiol 57:791–795

    Article  Google Scholar 

  33. Maekawa K, Nakamura S, Watanabe D (2012) Termite soldier differentiation in incipient colonies is related to the parental proctodeal trophallactic behavior. Zool Sci 29:213–217

    Article  Google Scholar 

  34. Lüscher M (1961) Social control of polymorphism in termites. In: Kennedy JS (ed) Insect polymorphism. Royal Entomological Society of London, London, pp 57–67

    Google Scholar 

  35. Shimoji H, Oguchi K, Hayashi Y, Hojo MK, Miura T (2017) Regulation of neotenic differentiation through direct physical contact in the damp-wood termite Hodotermopsis sjostedti. Insectes Soc 64:393–401

    Article  Google Scholar 

  36. Sun Q, Haynes KF, Hampton JD, Zhou X (2017) Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Sci Nat 104:79

    Article  Google Scholar 

  37. Watanabe D, Gotoh H, Miura T, Maekawa K (2014) Social interactions affecting caste development through physiological actions in termites. Front Physiol 5:127

    Article  Google Scholar 

  38. Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Quart Rev Biol 57:109–133

    Article  Google Scholar 

  39. Oguchi K, Maekawa K, Miura T (2021) Regulatory mechanisms underlying the differentiation of neotenic reproductives in termites: Partial release from arrested development. Front Ecol Evol 9:635552

    Article  Google Scholar 

  40. Weil T, Rehli M, Korb J (2007) Molecular basis for the reproductive division of labour in a lower termite. BMC Genom 8:1–9

    Article  Google Scholar 

  41. Korb J, Weil T, Hoffmann K, Foster KR, Rehli M (2009) A gene necessary for reproductive suppression in termites. Science 324:758–758

    Article  Google Scholar 

  42. Lin S, Werle J, Korb J (2021) Transcriptomic analyses of the termite, Cryptotermes secundus, reveal a gene network underlying a long lifespan and high fecundity. Commun Biol 4:1–12

    Article  Google Scholar 

  43. Robinson GE (1999) Integrative animal behaviour and sociogenomics. Trends Ecol Evol 14:202–205

    Article  Google Scholar 

  44. Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón T, Guigó R, Sumner S (2013) Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol 14:R20

    Article  Google Scholar 

  45. Standage DS, Berens AJ, Glastad KM, Severin AJ, Brendel VP, Toth AL (2016) Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol Ecol 25:1769–1784

    Article  Google Scholar 

  46. Berens AJ, Hunt JH, Toth AL (2018) Comparative transcriptomics of convergent evolution: different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Mol Biol Evol 32:690–703

    Article  Google Scholar 

  47. Miura T, Scharf ME (2011) Molecular basis underlying caste differentiation in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, pp 211–253

    Google Scholar 

  48. Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu H, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard J, Pan H, Reese JT, Scharf ME, Sun F, Vogel H, Xiao J, Yang W, Yang Z, Yang Z, Zhou J, Zhu J, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang G, Liebig J (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:1–12

    Article  Google Scholar 

  49. Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, Gowin J, Greiner C, Han Y, Hu H, Hughes DST, Huylmans AK, Kemena C, Kremer LPM, Lee SL, Lopez-Ezquerra A, Mallet L, Monroy-Kuhn JM, Moser A, Murali SC, Muzny DM, Otani S, Piulachs MD, Poelchau M, Qu J, Schaub F, Wada-Katsumata A, Worley KC, Xie Q, Ylla G, Poulsen M, Gibbs RA, Schal C, Richards S, Belles X, Korb J, Bornberg-Bauer E (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2:557–566

    Article  Google Scholar 

  50. Shigenobu S, Hayashi Y, Watanabe D, Tokuda G, Hojo MY, Toga K, Saiki R, Yaguchi H, Masuoka Y, Suzuki Y, Suzuki S, Kimura M, Matsunami M, Sugime Y, Oguchi K, Niimi T, Gotoh H, Mojo MK, Miyazaki S, Toyoda A, Miura T, Maekawa K (2022) Genomic and transcriptomic analyses of the subterranean termite Reticulitermes speratus: gene duplication facilitates social evolution. Proc Natl Acad Sci USA 119:e2110361119

    Article  Google Scholar 

  51. Seyfarth RM, Cheney DL (2003) Signalers and receivers in animal communication. Ann Rev Psychol 54:145–173

    Article  Google Scholar 

  52. von Frisch K (1967) The dance language and orientation of bees. Harvard University Press, Cambridge

    Google Scholar 

  53. Leonhardt SD, Menzel F, Nehring V, Schmitt T (2016) Ecology and evolution of communication in social insects. Cell 164:1277–1287

    Article  Google Scholar 

  54. LeBoeuf AC, Benton R, Keller L (2013) The molecular basis of social behavior: models, methods and advances. Curr Opin Neurobiol 23:3–10

    Article  Google Scholar 

  55. Hojo MK, Ihii K, Sakura M, Yamaguchi K, Shigenobu S, Ozaki M (2015) Antennal RNA-sequencing analysis reveals evolutionary aspects of chemosensory proteins in the carpenter ant, Camponotus japonicus. Sci Rep 5:13541

    Article  Google Scholar 

  56. d’Ettorre P, Deisig N, Sandoz J-C (2017) Decoding ants’ olfactory system sheds light on the evolution of social communication. Proc Natl Acad Sci USA 114:8911–8913

    Article  Google Scholar 

  57. McKenzie SK, Kronauer DJC (2018) The genomic architecture and molecular evolution of ant odorant receptors. Genome Res 28:1757–1765

    Article  Google Scholar 

  58. Mitaka Y, Akino T (2021) A review of termite pheromones: multifaceted, context -dependent, and rational chemical communications. Front Ecol Evol 8:595614

    Article  Google Scholar 

  59. Sherman PW, Jarvis JUM, Alexander RD (1991) The biology of the naked mole-rat (monographs in behavior and ecology). Princeton Univ Press, Princeton

    Google Scholar 

  60. Bennett NC, Faulkes CG (2000) African mole-rats: ecology and eusociality. Cambridge University Press, Cambridge

    Google Scholar 

  61. Brett RA (1991) The ecology of naked-mole-rat colonies: burrowing, food, and limiting factors. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 137–148

    Google Scholar 

  62. Faulkes CG, Abbott DH, Jarvis JUM, Sherriff F (1990) LH responses of female naked mole-rats, Heterocephalus glaber, to single and multiple doses of exogenous GnRH. J Reprod Fertil 89:317–323

    Article  Google Scholar 

  63. Faulkes CG, Abbott DH, Jarvis JUM (1991) Social suppression of reproduction in male naked mole-rats, Heterocephalus glaber. J Reprod Fertil 91:593–604

    Article  Google Scholar 

  64. Faulkes CG, Abbott DH (1993) Evidence that primer pheromones do not cause social suppression of reproduction in male and female naked-mole rats (Heterocephalus glaber). J Reprod Fertil 99:225–230

    Article  Google Scholar 

  65. Watarai A, Arai N, Miyawaki S, Okano H, Miura K, Mogi K, Kikusui T (2018) Responses to pup vocalizations in subordinate naked mole-rats are induced by estradiol ingested through coprophagy of queen’s feces. Proc Natl Acad Sci USA 115:9264–9269

    Article  Google Scholar 

  66. Kutsukake N, Inada M, Sakamoto SH, Okanoya K (2012) A distinct role of the queen in coordinated workload and soil distribution in eusocial naked mole-rats. PLoS ONE 7:e44584

    Article  Google Scholar 

  67. Mackie GO (1986) From aggregates to integrates: physiological aspects of modularity in colonial animals. Phil Trans R Soc Lond B 313:175–196

    Article  Google Scholar 

  68. Simpson C, Herrera-Cubilla A, Jackson BC (2020) How colonial animals evolve. Sci Adv 6:eaaw9530

    Article  Google Scholar 

  69. Mapstone GM (2014) Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9:e87737

    Article  Google Scholar 

  70. Mukai H, Terakado K, Reed C (1997) Bryozoa. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates. Wiley, Hoboken, pp 45–206

    Google Scholar 

  71. Lidgard S, Carter MC, Dick MH, Gordon DP, Ostrovsky AN (2012) Division of labor and recurrent evolution of polymorphisms in a group of colonial animals. Evol Ecol 26:233–257

    Article  Google Scholar 

  72. Schack CR, Gordon DP, Ryan KG (2019) Modularity is the mother of invention: a review of polymorphism in bryozoans. Biol Rev 94:773–809

    Article  Google Scholar 

  73. Yamaguchi H, Hirose M, Nakamura M, Udagawa S, Oguchi K, Shinji J, Kohtsuka H, Miura T (2021) Developmental process of a heterozooid: avicularium formation in a bryozoan, Bugulina californica. Zool Sci 38:203–212

    Article  Google Scholar 

  74. Miura T, Oguchi K, Nakamura M, Jimi N, Miura S, Hayashi Y, Koshikawa S, Aguado MT (2019) Life cycle of the Japanese green syllid, Megasyllis nipponica (Annelida: Syllidae): field collection and establishment of rearing system. Zool Sci 36:372–379

    Article  Google Scholar 

  75. Imajima M (1966) The syllidae (Polychaetous Annelids) from Japan (V)-Syllinae. Publ Seto Mar Biol Lab 14:253–294

    Article  Google Scholar 

  76. Malaquin A (1893) Recherches sur les Syllidiens: morphologie, anatomie, reproduction, développement. Mém Soc Sci Arts Lille, Sér 4(18):1–477

    Google Scholar 

  77. Franke H (1999) Reproduction of the Syllidae (Annelida: Polychaeta). Hydrobiologia 402:39–55

    Article  Google Scholar 

  78. Theraulaz G, Bonabeau E, Denuebourg J-N (1998) Response threshold reinforcements and division of labour in insect societies. Proc R Soc Lond B 265:327–332

    Article  Google Scholar 

  79. Bodi M, Thenius R, Szopek M, Schmickl T, Crailsheim K (2012) Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Math Comput Model Dyn Syst 18:87–100

    Article  MATH  Google Scholar 

  80. Hamann H (2018) Swarm robotics: a formal approach. Springer, Cham

    Book  Google Scholar 

  81. Bonabeau E, Theraulaz G, Dorigo M (1999) Swarm intelligence: from natural to artificial systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  82. Shimizu M, Ishiguro A, Kawakatsu T (2005) Slimebot: a modular robot that exploits emergent phenomena. In Proc. 2005 IEEE International Conference on Robotics and Automation, pp 2982–2987

  83. Li S, Batra R, Brown D, Chang HD, Ranganathan N, Hoberman C, Rus D, Lipson H (2019) Particle robotics based on statistical mechanics of loosely coupled components. Nature 567:361–365

    Article  Google Scholar 

  84. Werfel J, Petersen K, Nagpal R (2014) Designing collective behavior in a termite-inspired robot construction team. Science 343:754–758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Miura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, T., Oguchi, K., Yamaguchi, H. et al. Understanding of superorganisms: collective behavior, differentiation and social organization. Artif Life Robotics 27, 204–212 (2022). https://doi.org/10.1007/s10015-022-00754-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-022-00754-x

Keywords

Navigation