[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On the way to high-conductivity single lithium-ion conductors

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Golodnitsky D (2009) Electrolytes: single lithium ion conducting polymers. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati D (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam

    Google Scholar 

  2. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Horn YS (2015) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162

    Article  Google Scholar 

  3. Deiseroth HJ, Kong ST, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M (2008) Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed 47(4):755–758

    Article  CAS  Google Scholar 

  4. Boulineau S, Courty M, Tarascon JM, Viallet V (2012) Mechanochemical synthesis of Li-argyrodite Li 6 PS 5 X (X= Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221:1–5

    Article  CAS  Google Scholar 

  5. Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids: electrodes and electrolytes. North-Holland, New York

    Google Scholar 

  6. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Article  CAS  Google Scholar 

  7. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH, New York

    Google Scholar 

  8. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ (2011) Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim Acta 56(11):3926–3933

    Article  CAS  Google Scholar 

  9. Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F et al (2014) Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem 42(4):39–56

    CAS  Google Scholar 

  10. Padmaraj O, Venkateswarlu M, Satyanarayana N (2013) Effect of ZnO filler concentration on the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application. Ionics 19(12):1835–1842

    Article  CAS  Google Scholar 

  11. Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157(7):A846–A849

    Article  CAS  Google Scholar 

  12. Sadoway DR (2004) Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J Power Sources 129(1):1–3

    Article  CAS  Google Scholar 

  13. Meziane R, Bonnet JP, Courty M, Djellab K, Armand M (2011) Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim Acta 57:14–19

    Article  CAS  Google Scholar 

  14. Feng S, Shi D, Liu F, Zhen L, Nie J, Feng W, Huang X, Armand M, Zhou Z (2013) Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim Acta 93:254–263

    Article  CAS  Google Scholar 

  15. Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes. J Phys Condens Matter 7(34):6823–6832

    Article  CAS  Google Scholar 

  16. Allcock HR, Welna DT, Maher AE (2006) Single ion conductors—polyphosphazenes with sulfonimide functional groups. Solid State Ionics 177(7):741–747

    Article  CAS  Google Scholar 

  17. Sun XG, Hou J, Kerr JB (2005) Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate. Electrochim Acta 50(5):1139–1147

    Article  CAS  Google Scholar 

  18. Siska DP, Shriver DF (2001) Li+ conductivity of polysiloxane−trifluoromethylsulfonamide polyelectrolytes. Chem Mater 13(12):4698–4700

    Article  CAS  Google Scholar 

  19. Ma Q, Zhang H, Zhou C, Zheng L, Cheng P, Nie J, Feng W, Hu Y-S, Li H, Huang X, Chen L, Armand M, Zhou Z (2016) Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed 55:2521–2525

    Article  CAS  Google Scholar 

  20. Yan S, Xie J, Wu Q, Zhou S, Qu A, Wu W (2015) Highly efficient solid polymer electrolytes using ion containing polymer microgels. Polym Chem 6(7):1052–1055

    Article  CAS  Google Scholar 

  21. Van Humbeck JF, Aubrey ML, Alsbaiee A, Ameloot R, Coates GW, Dichtel WR, Long JR (2015) Tetraarylborate polymer networks as single-ion conducting solid electrolytes. Chem Sci 6:5499

    Article  CAS  Google Scholar 

  22. Mathews KL, Budgin AM, Beeram S, Joenathan AT, Stein BD, Werner-Zwanziger U, Pink M, Baker LA, Mahmoud WE, Carini JP, Bronstein LM (2013) Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers. J Mater Chem A 1(4):1108–1116

    Article  CAS  Google Scholar 

  23. Ghosh A, Kofinas P (2008) PEO based block copolymer as solid state lithium battery electrolyte. ECS Trans 11(29):131–137

    Article  CAS  Google Scholar 

  24. Bouchet R, Maria S, Meziane R, Aboulaich A , Lienafa L, Bonnet J-P, Phan TNT, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12

  25. Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou Z (2017) Single Lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46:797–815

    Article  CAS  Google Scholar 

  26. Xu G, Sun Y, Rohan R, Zhang Y, Cai W, Cheng H (2014) A lithium poly (pyromellitic acid borate) gel electrolyte membrane for lithium-ion batteries. J Mater Sci 49(17):6111–6117

    Article  CAS  Google Scholar 

  27. Qin B, Liu Z, Zheng J, Hu P, Ding G, Zhang C, Zhao J, Kong D, Cui G (2015) Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries. J Mater Chem A 3:7773

    Article  CAS  Google Scholar 

  28. Wang X, Liu Z, Zhang C, Kong Q, Yao J, Han P, Jiang W, Xu H, Cui G (2013) Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries. Electrochim Acta 92:132–138

    Article  CAS  Google Scholar 

  29. Xu G, Zhang Y, Rohan R, Cai W, Cheng H (2014) Synthesis, characterization and battery performance of a lithium poly (4-vinylphenol) phenolate borate composite membrane. Electrochim Acta 139:264–269

    Article  CAS  Google Scholar 

  30. Zhang Y, Cai W, Rohan R, Pan M, Liu Y, Liu X, Li C, Sun Y, Cheng H (2016) Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp 3 boron-based solid single ion conducting polymer electrolyte. J Power Sources 306:152–161

    Article  CAS  Google Scholar 

  31. Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162(1):685–689

    Article  CAS  Google Scholar 

  32. Zhang Y, Lim CA, Cai W, Rohan R, Xu G, Sun Y, Cheng H (2014) Design and synthesis of a single ion conducting block copolymer electrolyte with multi functionality for lithium ion batteries. RSC Adv 4(83):43857–43864

    Article  CAS  Google Scholar 

  33. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  34. Zhang Y, Xu G, Sun Y, Han B, Chen Z, Rohan R, Cheng H (2013) A class of sp 3 boron-based single-ion polymeric electrolytes for lithium ion batteries. RSC Adv 3(35):14934–14937

    Article  CAS  Google Scholar 

  35. Xu W, Angell CA (2001) Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid-State Lett 4(1):E1–E4

    Article  CAS  Google Scholar 

  36. Rohan R, Paree K, Chen Z, Cai W, Zhang Y, Xu G, Gao Z, Cheng H (2015) A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries. J Mater Chem A 3(40):20267–20276

    Article  CAS  Google Scholar 

  37. Oh H, Xu K, Yoo HD, Kim DS, Chanthad C, Yang G, Jin J, Ayhan IA, Oh SM, Wang Q (2015) Poly (arylene ether)-based single-ion conductors for lithium-ion batteries. Chem Mater 28(1):188–196

    Article  Google Scholar 

  38. Zhu YS, Gao XW, Wang XJ, Hou YY, Liu LL, Wu YP (2012) A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochem Commun 22:29–32

    Article  CAS  Google Scholar 

  39. Zhu YS, Wang XJ, Hou YY, Gao XW, Liu LL, Wu YP, Shimizu M (2013) A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim Acta 87:113–118

    Article  CAS  Google Scholar 

  40. Wang X, Liu Z, Kong Q, Jiang W, Yao J, Zhang C, Cui G (2014) A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics 262:747–753

    Article  CAS  Google Scholar 

  41. Porcarelli L, Shaplov AS, Bell F, Nair JR, Mecerreyes D, Gerbaldi C (2016) Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett 1(4):678–682

    Article  CAS  Google Scholar 

  42. Rohan R, Sun Y, Cai W, Zhang Y, Paree K, Xu G, Cheng H (2014) Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries. Solid State Ionics 268:294–299

    Article  CAS  Google Scholar 

  43. Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Article  CAS  Google Scholar 

  44. Ohno H (ed) (2005) Electrochemical aspects of ionic liquids. Wiley, New York

    Google Scholar 

  45. Ito K, Nishina N, Ohno H (2000) Enhanced ion conduction in imidazolium-type molten salts. Electrochim Acta 45:1295–1298

    Article  CAS  Google Scholar 

  46. Shaplov AS, Lozinskaya EI, Vygodskii YS (2010) Polymer ionic liquids: synthesis, design and application in electrochemistry as ion conducting materials. In: Electrochemical properties and applications of ionic liquids. pp 203–298

  47. Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources 195(11):3668–3675

    Article  CAS  Google Scholar 

  48. Shaplov AS, Marcilla R, Mecerreyes D (2015) Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 175:18–34

    Article  CAS  Google Scholar 

  49. Marcilla R, Alcaide F, Sardon H, Pomposo JA, Pozo-Gonzal C, Mecerreyes D (2006) Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem Commun 8(3):482–488

    Article  CAS  Google Scholar 

  50. Porcarelli L, Shaplov AS, Salsamendi M, Nair JR, Vygodskii YS, Mecerreyes D, Gerbaldi C (2016) Single-ion block co poly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl Mater Interfaces 8(16):10350–10359

    Article  CAS  Google Scholar 

  51. Appetecchi G. B., Dautzenberg G and Scrosati B (1995). A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries. J Electrochem Soc 1996 volume 143, 1:6–12

  52. Golodnitsky D, Kovarsky R, Mazor H, Rosenberg Y, Lapides I, Peled E, Wieczorek W, Plewa A, Siekierski M, Kalita M, Settimi L, Scrosati B, Scanlon LG (2007) Host-guest interactions in single-ion lithium polymer electrolyte. J Electrochem Soc 154(6):A547–A553

  53. Florjańczyk Z, Zygadło-Monikowska E, Wieczorek W, Ryszawy A, Tomaszewska A, Fredman K, Golodnitsky D, Peled E, Scrosati B (2004) Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts. J Phys Chem B 108(39):14907–14914

    Article  Google Scholar 

  54. Angell CA, Liu C, Sanchez E (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362(6416):137–139

    Article  CAS  Google Scholar 

  55. Fan J, Angell CA (1995) The preparation, conductivity, viscosity and mechanical properties of polymer electrolytes and new hybrid ionic rubber electrolytes. Electrochim Acta 40(13):2397–2400

    Article  CAS  Google Scholar 

  56. Villaluenga I, Wujcik KH, Tong W, Devaux D, Wong DH, DeSimone JM, Balsara NP (2016) Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc Natl Acad Sci 113(1):52–57

    Article  CAS  Google Scholar 

  57. Xu W, Angell CA (2002) Preparation and characterization of novel “polyMOB” polyanionic solid electrolytes with weak coulomb traps. Solid State Ionics 147(3):295–301

    Article  CAS  Google Scholar 

  58. Zalewska A, Pruszczyk I, Sułek E, Wieczorek W (2003) New poly (acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization. Solid State Ionics 157(1):233–239

    Article  CAS  Google Scholar 

  59. Ferry A, Edman L, Forsyth M, MacFarlane DR, Sun J (2000) NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF 3 SO 3 and PAN. Electrochim Acta 45(8):1237–1242

    Article  CAS  Google Scholar 

  60. Wei X, Shriver DF (1998) Highly conductive polymer electrolytes containing rigid polymers. Chem Mater 10(9):2307–2308

    Article  CAS  Google Scholar 

  61. Mogurampelly S, Borodin O, Ganesan V (2016) Computer simulations of ion transport in polymer electrolyte membranes. ACS Appl Mater Interfaces 8:10350–10359

    Article  Google Scholar 

  62. Kumar B, Scanlon LG (2000) Composite electrolytes for lithium rechargeable batteries. J Electroceram 5(2):127–139

    Article  CAS  Google Scholar 

  63. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458

    Article  CAS  Google Scholar 

  64. Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156

    Article  CAS  Google Scholar 

  65. Ganapatibhotla LV, Maranas JK (2014) Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes. Macromolecules 47(11):3625–3634

    Article  CAS  Google Scholar 

  66. Eilmes A, Kubisiak P (2011) Molecular dynamics study on the effect of Lewis acid centers in poly (ethylene oxide)/LiClO4 polymer electrolyte. J Phys Chem B 115(50):14938–14946

    Article  CAS  Google Scholar 

  67. Wang W, Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect structure and properties. Polymers 8(11):387

    Article  Google Scholar 

  68. Bertasi F, Vezzù K, Giffin GA, Nosach T, Sideris P, Greenbaum S, Vittadello M, Di Noto V (2014) Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: electrical characterization. Int J Hydrog Energy 39(6):2884–2895

    Article  CAS  Google Scholar 

  69. Bertas F, Negro E, Vezzù K, Nawn G, Pagot G, Di Noto V (2015) Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly (ethylene glycol) 400. Electrochim Acta 175:113–123

    Article  Google Scholar 

  70. Ferry A, Edman L, Forsyth M, MacFarlane DR, Sun J (1999) Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly (acrylonitrile) and LiCF 3 SO 3. J Appl Phys 86(4):2346–2348

    Article  CAS  Google Scholar 

  71. Narayanan SR, Aswin K, Manohar B, Ratnakumar V (2015) In: Dudney NJ, West WC, Nanda J (eds) Handbook of solid state batteries, 2nd edn. Oak Ridge National Laboratory, USA

    Google Scholar 

  72. Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4(44):17251–17259

    Article  CAS  Google Scholar 

  73. Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027

    Article  CAS  Google Scholar 

  74. Cao C, Li ZB, Wang XL, Zhao XB, Han WQ (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2:25

    Article  Google Scholar 

  75. Adachi GY, Imanaka N, Tamura S (2002) Ionic conducting lanthanide oxides. Chem Rev 102(6):2405–2430

    Article  CAS  Google Scholar 

  76. Itoh M, Inaguma Y, Jung WH, Chen L, Nakamura T (1994) High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln= La, Pr, Nd, Sm). Solid State Ionics 70:203–207

    Article  Google Scholar 

  77. Bohnke O, Bohnke C, Fourquet JL (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics 91(1–2):21–31

    Article  CAS  Google Scholar 

  78. Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J (2015) Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 278:98–105

    Article  CAS  Google Scholar 

  79. Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14:1026–1031

    Article  CAS  Google Scholar 

  80. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K et al (2011) A lithium superionic conductor. Nat Mater 10(9):682–686

    Article  CAS  Google Scholar 

  81. Kuhn A, Duppel V, Lotsch BV (2013) Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8–exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ Sci 6(12):3548–3552

    Article  CAS  Google Scholar 

  82. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631

    Article  CAS  Google Scholar 

  83. Scrosati B (1995) Challenge of portable power. Nature 373:557

    Article  CAS  Google Scholar 

  84. Bron P, Dehnen S, Roling B (2016) Li 10 Si 0.3 Sn 0.7 P 2 S 12—a low-cost and low-grain-boundary-resistance lithium superionic conductor. J Power Sources 329:530–535

    Article  CAS  Google Scholar 

  85. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030

    Article  CAS  Google Scholar 

  86. Hassoun J, Verrelli R, Reale P, Panero S, Mariotto G, Greenbaum S, Scrosati B (2013) A structural, spectroscopic and electrochemical study of a lithium ion conducting Li 10 GeP 2 S 12 solid electrolyte. J Power Sources 229:117–122

    Article  CAS  Google Scholar 

  87. Wu B, Wang S, Evans WJ, Deng DZ, Yang J, Xiao J (2016) Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J Mater Chem A 4:15266–15280

    Article  CAS  Google Scholar 

  88. Syzdek J, Armand M, Gizowska M, Marcinek M, Sasim E, Szafran M, Wieczorek W (2009) Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—a novel approach. J Power Sources 194(1):66–72

    Article  CAS  Google Scholar 

  89. Sandi G, Kizilel R, Carrado KA, Fernández-Saavedra R, Castagnola N (2005) Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites. Electrochim Acta 50(19):3891–3896

    Article  CAS  Google Scholar 

  90. Blanga R, Golodnitsky D, Ardel G, Freedman K, Gladkich A, Rosenberg Y, Nathan M, Peled E (2013) Quasi-solid polymer-in-ceramic membrane for Li-ion batteries. Electrochim Acta 114:325–333

    Article  CAS  Google Scholar 

  91. Blanga R, Burstein L, Berman M, Greenbaum SG, Golodnitsky D (2015) Solid polymer-in-ceramic electrolyte formed by electrophoretic deposition. J Electrochem Soc 162(11):D3084–D3089

    Article  CAS  Google Scholar 

  92. Blanga R, Goor M, Burstein L, Rosenberg Y, Gladkich A, Logvinuk D, Shechtman I, Golodnitsky D (2016) The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 20(12):3393–3404

    Article  CAS  Google Scholar 

  93. Ruiz-Hitzky E, Aranda P (1990) Polymer-salt intercalation complexes in layer silicates. Adv Mater 2(11):545–547

    Article  CAS  Google Scholar 

  94. Riley M, Fedkiw PS, Khan SA (2002) Transport properties of lithium hectorite-based composite electrolytes. J Electrochem Soc 149(6):A667–A674

    Article  CAS  Google Scholar 

  95. Singh N, Galande C, Miranda A, Mathkar A, Gao W, Reddy ALM, Vlad A, Ajayan PM (2012) Sci Rep 2:481

    Article  Google Scholar 

  96. Hu Y, Sun X (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2(28):10712–10738

    Article  CAS  Google Scholar 

  97. Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2(28):10712–10738

  98. Kil EH, Choi KH, Ha HJ, Xu S, Rogers JA, Kim MR, Lee YG, Kim KM, Cho KY, Lee SY (2013) Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv Mater 25(10):1395–1400

    Article  CAS  Google Scholar 

  99. Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sources 126:192

  100. Lee M, Choi UH, Colby RH, Gibson HW (2010) Ion conduction in imidazolium acrylate ionic liquids and their polymers. Chem Mater 22(21):5814–5822

    Article  CAS  Google Scholar 

  101. Golodnitsky D, Strauss E, Peled E, Greenbaum S (2015) Review—on order and disorder in polymer electrolytes. J Electrochem Soc 162(14):A2551–A2566

    Article  CAS  Google Scholar 

  102. Zhang S, Chang Z, Xu K, Angell CA (2000) Molecular and anionic polymer and oligomer systems with microdecoupled conductivities. Electrochim Acta 45(8):1229–1236

    Article  CAS  Google Scholar 

  103. Ciosek M, Sannier L, Siekierski M, Golodnitsky D, Peled E, Scrosati B, Głowinkowskid S, Wieczorek W (2007) Ion transport phenomena in polymeric electrolytes. Electrochim Acta 53(4):1409–1416

    Article  CAS  Google Scholar 

  104. Strauss E, Menkin S, Golodnitsky D (2017) In: Costa CMS (ed) Printed batteries. Wiley-VCH in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Golodnitsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strauss, E., Menkin, S. & Golodnitsky, D. On the way to high-conductivity single lithium-ion conductors. J Solid State Electrochem 21, 1879–1905 (2017). https://doi.org/10.1007/s10008-017-3638-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3638-8

Keywords

Navigation