Abstract
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Golodnitsky D (2009) Electrolytes: single lithium ion conducting polymers. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati D (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam
Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Horn YS (2015) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162
Deiseroth HJ, Kong ST, Eckert H, Vannahme J, Reiner C, Zaiß T, Schlosser M (2008) Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed 47(4):755–758
Boulineau S, Courty M, Tarascon JM, Viallet V (2012) Mechanochemical synthesis of Li-argyrodite Li 6 PS 5 X (X= Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 221:1–5
Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids: electrodes and electrolytes. North-Holland, New York
Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328
Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH, New York
Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ (2011) Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim Acta 56(11):3926–3933
Amereller M, Schedlbauer T, Moosbauer D, Schreiner C, Stock C, Wudy F et al (2014) Electrolytes for lithium and lithium ion batteries: from synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Prog Solid State Chem 42(4):39–56
Padmaraj O, Venkateswarlu M, Satyanarayana N (2013) Effect of ZnO filler concentration on the conductivity, structure and morphology of PVdF-HFP nanocomposite solid polymer electrolyte for lithium battery application. Ionics 19(12):1835–1842
Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157(7):A846–A849
Sadoway DR (2004) Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J Power Sources 129(1):1–3
Meziane R, Bonnet JP, Courty M, Djellab K, Armand M (2011) Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim Acta 57:14–19
Feng S, Shi D, Liu F, Zhen L, Nie J, Feng W, Huang X, Armand M, Zhou Z (2013) Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim Acta 93:254–263
Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes. J Phys Condens Matter 7(34):6823–6832
Allcock HR, Welna DT, Maher AE (2006) Single ion conductors—polyphosphazenes with sulfonimide functional groups. Solid State Ionics 177(7):741–747
Sun XG, Hou J, Kerr JB (2005) Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate. Electrochim Acta 50(5):1139–1147
Siska DP, Shriver DF (2001) Li+ conductivity of polysiloxane−trifluoromethylsulfonamide polyelectrolytes. Chem Mater 13(12):4698–4700
Ma Q, Zhang H, Zhou C, Zheng L, Cheng P, Nie J, Feng W, Hu Y-S, Li H, Huang X, Chen L, Armand M, Zhou Z (2016) Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew Chem Int Ed 55:2521–2525
Yan S, Xie J, Wu Q, Zhou S, Qu A, Wu W (2015) Highly efficient solid polymer electrolytes using ion containing polymer microgels. Polym Chem 6(7):1052–1055
Van Humbeck JF, Aubrey ML, Alsbaiee A, Ameloot R, Coates GW, Dichtel WR, Long JR (2015) Tetraarylborate polymer networks as single-ion conducting solid electrolytes. Chem Sci 6:5499
Mathews KL, Budgin AM, Beeram S, Joenathan AT, Stein BD, Werner-Zwanziger U, Pink M, Baker LA, Mahmoud WE, Carini JP, Bronstein LM (2013) Solid polymer electrolytes which contain tricoordinate boron for enhanced conductivity and transference numbers. J Mater Chem A 1(4):1108–1116
Ghosh A, Kofinas P (2008) PEO based block copolymer as solid state lithium battery electrolyte. ECS Trans 11(29):131–137
Bouchet R, Maria S, Meziane R, Aboulaich A , Lienafa L, Bonnet J-P, Phan TNT, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12
Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, Armand M, Zhou Z (2017) Single Lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev 46:797–815
Xu G, Sun Y, Rohan R, Zhang Y, Cai W, Cheng H (2014) A lithium poly (pyromellitic acid borate) gel electrolyte membrane for lithium-ion batteries. J Mater Sci 49(17):6111–6117
Qin B, Liu Z, Zheng J, Hu P, Ding G, Zhang C, Zhao J, Kong D, Cui G (2015) Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries. J Mater Chem A 3:7773
Wang X, Liu Z, Zhang C, Kong Q, Yao J, Han P, Jiang W, Xu H, Cui G (2013) Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries. Electrochim Acta 92:132–138
Xu G, Zhang Y, Rohan R, Cai W, Cheng H (2014) Synthesis, characterization and battery performance of a lithium poly (4-vinylphenol) phenolate borate composite membrane. Electrochim Acta 139:264–269
Zhang Y, Cai W, Rohan R, Pan M, Liu Y, Liu X, Li C, Sun Y, Cheng H (2016) Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp 3 boron-based solid single ion conducting polymer electrolyte. J Power Sources 306:152–161
Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162(1):685–689
Zhang Y, Lim CA, Cai W, Rohan R, Xu G, Sun Y, Cheng H (2014) Design and synthesis of a single ion conducting block copolymer electrolyte with multi functionality for lithium ion batteries. RSC Adv 4(83):43857–43864
Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176
Zhang Y, Xu G, Sun Y, Han B, Chen Z, Rohan R, Cheng H (2013) A class of sp 3 boron-based single-ion polymeric electrolytes for lithium ion batteries. RSC Adv 3(35):14934–14937
Xu W, Angell CA (2001) Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid-State Lett 4(1):E1–E4
Rohan R, Paree K, Chen Z, Cai W, Zhang Y, Xu G, Gao Z, Cheng H (2015) A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries. J Mater Chem A 3(40):20267–20276
Oh H, Xu K, Yoo HD, Kim DS, Chanthad C, Yang G, Jin J, Ayhan IA, Oh SM, Wang Q (2015) Poly (arylene ether)-based single-ion conductors for lithium-ion batteries. Chem Mater 28(1):188–196
Zhu YS, Gao XW, Wang XJ, Hou YY, Liu LL, Wu YP (2012) A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochem Commun 22:29–32
Zhu YS, Wang XJ, Hou YY, Gao XW, Liu LL, Wu YP, Shimizu M (2013) A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim Acta 87:113–118
Wang X, Liu Z, Kong Q, Jiang W, Yao J, Zhang C, Cui G (2014) A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics 262:747–753
Porcarelli L, Shaplov AS, Bell F, Nair JR, Mecerreyes D, Gerbaldi C (2016) Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett 1(4):678–682
Rohan R, Sun Y, Cai W, Zhang Y, Paree K, Xu G, Cheng H (2014) Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries. Solid State Ionics 268:294–299
Mecerreyes D (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648
Ohno H (ed) (2005) Electrochemical aspects of ionic liquids. Wiley, New York
Ito K, Nishina N, Ohno H (2000) Enhanced ion conduction in imidazolium-type molten salts. Electrochim Acta 45:1295–1298
Shaplov AS, Lozinskaya EI, Vygodskii YS (2010) Polymer ionic liquids: synthesis, design and application in electrochemistry as ion conducting materials. In: Electrochemical properties and applications of ionic liquids. pp 203–298
Appetecchi GB, Kim GT, Montanino M, Carewska M, Marcilla R, Mecerreyes D, De Meatza I (2010) Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources 195(11):3668–3675
Shaplov AS, Marcilla R, Mecerreyes D (2015) Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 175:18–34
Marcilla R, Alcaide F, Sardon H, Pomposo JA, Pozo-Gonzal C, Mecerreyes D (2006) Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem Commun 8(3):482–488
Porcarelli L, Shaplov AS, Salsamendi M, Nair JR, Vygodskii YS, Mecerreyes D, Gerbaldi C (2016) Single-ion block co poly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS Appl Mater Interfaces 8(16):10350–10359
Appetecchi G. B., Dautzenberg G and Scrosati B (1995). A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries. J Electrochem Soc 1996 volume 143, 1:6–12
Golodnitsky D, Kovarsky R, Mazor H, Rosenberg Y, Lapides I, Peled E, Wieczorek W, Plewa A, Siekierski M, Kalita M, Settimi L, Scrosati B, Scanlon LG (2007) Host-guest interactions in single-ion lithium polymer electrolyte. J Electrochem Soc 154(6):A547–A553
Florjańczyk Z, Zygadło-Monikowska E, Wieczorek W, Ryszawy A, Tomaszewska A, Fredman K, Golodnitsky D, Peled E, Scrosati B (2004) Polymer-in-salt electrolytes based on acrylonitrile/butyl acrylate copolymers and lithium salts. J Phys Chem B 108(39):14907–14914
Angell CA, Liu C, Sanchez E (1993) Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362(6416):137–139
Fan J, Angell CA (1995) The preparation, conductivity, viscosity and mechanical properties of polymer electrolytes and new hybrid ionic rubber electrolytes. Electrochim Acta 40(13):2397–2400
Villaluenga I, Wujcik KH, Tong W, Devaux D, Wong DH, DeSimone JM, Balsara NP (2016) Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries. Proc Natl Acad Sci 113(1):52–57
Xu W, Angell CA (2002) Preparation and characterization of novel “polyMOB” polyanionic solid electrolytes with weak coulomb traps. Solid State Ionics 147(3):295–301
Zalewska A, Pruszczyk I, Sułek E, Wieczorek W (2003) New poly (acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization. Solid State Ionics 157(1):233–239
Ferry A, Edman L, Forsyth M, MacFarlane DR, Sun J (2000) NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF 3 SO 3 and PAN. Electrochim Acta 45(8):1237–1242
Wei X, Shriver DF (1998) Highly conductive polymer electrolytes containing rigid polymers. Chem Mater 10(9):2307–2308
Mogurampelly S, Borodin O, Ganesan V (2016) Computer simulations of ion transport in polymer electrolyte membranes. ACS Appl Mater Interfaces 8:10350–10359
Kumar B, Scanlon LG (2000) Composite electrolytes for lithium rechargeable batteries. J Electroceram 5(2):127–139
Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458
Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156
Ganapatibhotla LV, Maranas JK (2014) Interplay of surface chemistry and ion content in nanoparticle-filled solid polymer electrolytes. Macromolecules 47(11):3625–3634
Eilmes A, Kubisiak P (2011) Molecular dynamics study on the effect of Lewis acid centers in poly (ethylene oxide)/LiClO4 polymer electrolyte. J Phys Chem B 115(50):14938–14946
Wang W, Alexandridis P (2016) Composite polymer electrolytes: nanoparticles affect structure and properties. Polymers 8(11):387
Bertasi F, Vezzù K, Giffin GA, Nosach T, Sideris P, Greenbaum S, Vittadello M, Di Noto V (2014) Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: electrical characterization. Int J Hydrog Energy 39(6):2884–2895
Bertas F, Negro E, Vezzù K, Nawn G, Pagot G, Di Noto V (2015) Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly (ethylene glycol) 400. Electrochim Acta 175:113–123
Ferry A, Edman L, Forsyth M, MacFarlane DR, Sun J (1999) Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly (acrylonitrile) and LiCF 3 SO 3. J Appl Phys 86(4):2346–2348
Narayanan SR, Aswin K, Manohar B, Ratnakumar V (2015) In: Dudney NJ, West WC, Nanda J (eds) Handbook of solid state batteries, 2nd edn. Oak Ridge National Laboratory, USA
Varzi A, Raccichini R, Passerini S, Scrosati B (2016) Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J Mater Chem A 4(44):17251–17259
Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi GY (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027
Cao C, Li ZB, Wang XL, Zhao XB, Han WQ (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2:25
Adachi GY, Imanaka N, Tamura S (2002) Ionic conducting lanthanide oxides. Chem Rev 102(6):2405–2430
Itoh M, Inaguma Y, Jung WH, Chen L, Nakamura T (1994) High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln= La, Pr, Nd, Sm). Solid State Ionics 70:203–207
Bohnke O, Bohnke C, Fourquet JL (1996) Mechanism of ionic conduction and electrochemical intercalation of lithium into the perovskite lanthanum lithium titanate. Solid State Ionics 91(1–2):21–31
Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J (2015) Interphase formation on lithium solid electrolytes—an in situ approach to study interfacial reactions by photoelectron spectroscopy. Solid State Ionics 278:98–105
Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14:1026–1031
Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K et al (2011) A lithium superionic conductor. Nat Mater 10(9):682–686
Kuhn A, Duppel V, Lotsch BV (2013) Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8–exploring the Li ion dynamics in LGPS Li electrolytes. Energy Environ Sci 6(12):3548–3552
Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7(2):627–631
Scrosati B (1995) Challenge of portable power. Nature 373:557
Bron P, Dehnen S, Roling B (2016) Li 10 Si 0.3 Sn 0.7 P 2 S 12—a low-cost and low-grain-boundary-resistance lithium superionic conductor. J Power Sources 329:530–535
Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030
Hassoun J, Verrelli R, Reale P, Panero S, Mariotto G, Greenbaum S, Scrosati B (2013) A structural, spectroscopic and electrochemical study of a lithium ion conducting Li 10 GeP 2 S 12 solid electrolyte. J Power Sources 229:117–122
Wu B, Wang S, Evans WJ, Deng DZ, Yang J, Xiao J (2016) Interfacial behaviours between lithium ion conductors and electrode materials in various battery systems. J Mater Chem A 4:15266–15280
Syzdek J, Armand M, Gizowska M, Marcinek M, Sasim E, Szafran M, Wieczorek W (2009) Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes—a novel approach. J Power Sources 194(1):66–72
Sandi G, Kizilel R, Carrado KA, Fernández-Saavedra R, Castagnola N (2005) Effect of the silica precursor on the conductivity of hectorite-derived polymer nanocomposites. Electrochim Acta 50(19):3891–3896
Blanga R, Golodnitsky D, Ardel G, Freedman K, Gladkich A, Rosenberg Y, Nathan M, Peled E (2013) Quasi-solid polymer-in-ceramic membrane for Li-ion batteries. Electrochim Acta 114:325–333
Blanga R, Burstein L, Berman M, Greenbaum SG, Golodnitsky D (2015) Solid polymer-in-ceramic electrolyte formed by electrophoretic deposition. J Electrochem Soc 162(11):D3084–D3089
Blanga R, Goor M, Burstein L, Rosenberg Y, Gladkich A, Logvinuk D, Shechtman I, Golodnitsky D (2016) The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries. J Solid State Electrochem 20(12):3393–3404
Ruiz-Hitzky E, Aranda P (1990) Polymer-salt intercalation complexes in layer silicates. Adv Mater 2(11):545–547
Riley M, Fedkiw PS, Khan SA (2002) Transport properties of lithium hectorite-based composite electrolytes. J Electrochem Soc 149(6):A667–A674
Singh N, Galande C, Miranda A, Mathkar A, Gao W, Reddy ALM, Vlad A, Ajayan PM (2012) Sci Rep 2:481
Hu Y, Sun X (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2(28):10712–10738
Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2(28):10712–10738
Kil EH, Choi KH, Ha HJ, Xu S, Rogers JA, Kim MR, Lee YG, Kim KM, Cho KY, Lee SY (2013) Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries. Adv Mater 25(10):1395–1400
Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sources 126:192
Lee M, Choi UH, Colby RH, Gibson HW (2010) Ion conduction in imidazolium acrylate ionic liquids and their polymers. Chem Mater 22(21):5814–5822
Golodnitsky D, Strauss E, Peled E, Greenbaum S (2015) Review—on order and disorder in polymer electrolytes. J Electrochem Soc 162(14):A2551–A2566
Zhang S, Chang Z, Xu K, Angell CA (2000) Molecular and anionic polymer and oligomer systems with microdecoupled conductivities. Electrochim Acta 45(8):1229–1236
Ciosek M, Sannier L, Siekierski M, Golodnitsky D, Peled E, Scrosati B, Głowinkowskid S, Wieczorek W (2007) Ion transport phenomena in polymeric electrolytes. Electrochim Acta 53(4):1409–1416
Strauss E, Menkin S, Golodnitsky D (2017) In: Costa CMS (ed) Printed batteries. Wiley-VCH in press
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Strauss, E., Menkin, S. & Golodnitsky, D. On the way to high-conductivity single lithium-ion conductors. J Solid State Electrochem 21, 1879–1905 (2017). https://doi.org/10.1007/s10008-017-3638-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10008-017-3638-8