[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Pricing a contingent claim liability with transaction costs using asymptotic analysis for optimal investment

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We price a contingent claim liability (claim for short) using a utility indifference argument. We consider an agent with exponential utility, who invests in a stock and a money market account with the goal of maximizing the utility of his investment at the final time T in the presence of a proportional transaction cost ε>0 in two cases: with and without a claim. Using the heuristic computations of Whalley and Wilmott (Math. Finance 7:307–324, 1997), under suitable technical conditions, we provide a rigorous derivation of the asymptotic expansion of the value function in powers of \(\varepsilon^{\frac{1}{3}}\) in both cases with and without a claim. Additionally, using the utility indifference method, we derive the price of the claim at the leading order of \(\varepsilon^{\frac{2}{3}}\). In both cases, we also obtain a “nearly optimal” strategy, whose expected utility asymptotically matches the leading terms of the value function. We also present an example of how this methodology can be used to price more exotic barrier-type contingent claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We thank an anonymous referee for pointing out this example.

References

  1. Barles, G., Soner, H.M.: Option pricing with transaction costs and a nonlinear Black–Scholes equation. Finance Stoch. 2, 369–397 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bichuch, M.: Asymptotic analysis for optimal investment in finite time with transaction costs. SIAM J. Financ. Math. 3, 433–458 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bichuch, M., Shreve, S.: Utility maximization trading two futures with transaction costs. SIAM J. Financ. Math. 4, 26–85 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouchard, B.: Option pricing via utility maximization in the presence of transaction costs: an asymptotic analysis. Preprint (2000). Available at www.ceremade.dauphine.fr/CMD/2000-6.ps

  5. Bouchard, B., Touzi, N.: Explicit solution of the multi-variable super-replication problem under transaction costs. Ann. Appl. Probab. 10, 685–708 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Boyle, P.P., Vorst, T.: Option replication in discrete time with transaction costs. J. Finance 47, 272–293 (1992)

    Article  Google Scholar 

  7. Burdzy, K., Kang, W., Ramanan, K.: The Skorokhod problem in a time-dependent interval. Stoch. Process. Appl. 119, 428–452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clewlow, L., Hodges, S.D.: Optimal delta-hedging under transactions costs. J. Econ. Dyn. Control 21, 1353–1376 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantinides, G., Zariphopoulou, T.: Bounds on prices of contingent claims in an intertemporal economy with proportional transaction costs and general preferences. Finance Stoch. 3, 345–369 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantinides, G., Zariphopoulou, T.: Bounds on derivative prices in an intertemporal setting with proportional transaction costs and multiple securities. Math. Finance 11, 331–346 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Crandall, M.G., Evans, L.C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 282, 487–502 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. AMS Bull. 1, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  13. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cvitanić, J., Pham, H., Touzi, N.: A closed-form solution to the problem of super-replication under transaction costs. Finance Stoch. 3, 35–54 (1999)

    Article  MATH  Google Scholar 

  15. Davis, M.H.A., Norman, A.: Portfolio selection with transaction costs. Math. Oper. Res. 15, 676–713 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Davis, M.H.A., Panas, V.G., Zariphopoulou, T.: European option pricing with transaction costs. SIAM J. Control 31, 470–493 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Delbaen, F., Kabanov, Yu., Valkeila, E.: Hedging under transaction costs in currency markets: a discrete-time model. Math. Finance 12, 45–61 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dumas, B., Luciano, E.: An exact solution to a dynamic portfolio choice problem under transaction costs. J. Finance 46, 577–595 (1991)

    Article  Google Scholar 

  19. Goodman, J., Ostrov, D.N.: An option to reduce transaction costs. SIAM J. Financ. Math. 2, 512–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guasoni, P., Muhle-Karbe, J.: Long horizons, high risk-aversion, and endogenous spreads. Math. Finance (2013). doi:10.1111/mafi.12046

  21. Hodges, S., Neuberger, A.: Option replication of contingent claims under transaction costs. Rev. Futures Mark. 8, 222–239 (1989)

    Google Scholar 

  22. Janeček, K., Shreve, S.: Asymptotic analysis for optimal investment and consumption with transaction costs. Finance Stoch. 8, 181–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Janeček, K., Shreve, S.: Futures trading with transaction costs. Ill. J. Math. 54, 1239–1284 (2010)

    MATH  Google Scholar 

  24. Kabanov, Yu., Last, G.: Hedging under transaction costs in currency markets. Math. Finance 12, 63–70 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kabanov, Yu., Stricker, C.: Hedging of contingent claims under transaction costs. In: Sandmann, K., Schönbucher, P. (eds.) Advances in Finance and Stochastics. Essays in Honor of Dieter Sondermann, pp. 125–136. Springer, Berlin (2002)

    Chapter  Google Scholar 

  26. Kallsen, J., Muhle-Karbe, J.: Option pricing and hedging with small transaction costs. Math. Finance (2013). doi:10.1111/mafi.12035

    Google Scholar 

  27. Koehl, P.F., Pham, H., Touzi, N.: Hedging in discrete time under transaction costs and continuous-time limit. J. Appl. Probab. 36, 163–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Koehl, P.F., Pham, H., Touzi, N.: On super-replication under transaction costs in general discrete time models. Theory Probab. Appl. 45, 783–788 (1999)

    MathSciNet  Google Scholar 

  29. Leland, H.: Option pricing and replication with transaction costs. J. Finance 40, 1283–1301 (1985)

    Article  Google Scholar 

  30. Levental, S., Skorohod, A.: On the possibility of hedging options in the presence of transaction costs. Ann. Appl. Probab. 7, 410–443 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lott, K.: Ein Verfahren zur Replikation von Optionen unter Transaktionkosten in stetiger Zeit. Dissertation, Universität der Bundeswehr München, Institut für Mathematik und Datenverarbeitung (1993)

  32. Magill, M.J.P., Constantinides, G.M.: Portfolio selection with transaction costs. J. Econ. Theory 13, 245–263 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  33. Merton, R.: Optimum consumption and portfolio rules in a continuous-time case. J. Econ. Theory 3, 373–413 (1971). Erratum 6, 213–214 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  34. Monoyios, M.: Option pricing with transaction costs using a Markov chain approximation. J. Econ. Dyn. Control 28, 889–913 (2004)

    Article  MathSciNet  Google Scholar 

  35. Muthuraman, K., Kumar, S.: Multidimensional portfolio optimization with proportional transaction costs. Math. Finance 16, 301–335 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pham, H.: Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  37. Possamaï, D., Soner, H.M., Touzi, N.: Homogenization and asymptotics for small transaction costs. Preprint (2012). Available at arXiv:1212.6275

  38. Roper, M., Rutkowski, M.: On the relationship between the call price surface and the implied volatility surface close to expiry. Int. J. Theor. Appl. Finance 12, 427–441 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schachermayer, W.: Optimal investment in incomplete markets when wealth may become negative. Ann. Appl. Probab. 11, 694–734 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shreve, S., Soner, H.M.: Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4, 609–692 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Soner, H.M., Shreve, S., Cvitanić, J.: There is no nontrivial hedging portfolio for option pricing with transaction costs. Ann. Appl. Probab. 5, 327–355 (1995)

    Article  MATH  Google Scholar 

  42. Whalley, A.E., Wilmott, P.: An asymptotic analysis of an optimal hedging model for option pricing under transaction costs. Math. Finance 7, 307–324 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zakamouline, V.: Optimal hedging of option portfolios with transaction costs. Preprint (2006). Available at http://ssrn.com/abstract=938934

Download references

Acknowledgements

The author acknowledges partial financial support from NSF grant DMS-0739195. The author wants to thank Peter Bank, Paolo Guasoni, Johannes Muhle-Karbe, Steven Shreve, and Stephan Sturm for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Bichuch.

Appendix

Appendix

Proof of Lemma 4.1

Another way to express P 0(S,t) is to use the risk-neutral probability \(\tilde{\mathbb{P}}\) in the complete market with zero transaction costs. Then the Black–Scholes price P 0(S,t) of the contingent claim is

$$\begin{aligned} P_0(S,t)=\operatorname{e}^{-r(T-t)}\tilde{\mathbb{E}}_t^S\left [g(S_T)\right]=\operatorname{e}^{-r(T-t)}\tilde{\mathbb{E}}_t^S\big[g\big(S\operatorname{e}^{\sigma(Z_T-Z_t)+(r-\frac{\sigma^2}{2})(T-t) }\big)\big]. \end{aligned}$$

From Assumption 3.3, g is nonnegative, and it follows that P 0≥0. Moreover, for i≥2, we calculate

$$\begin{aligned} &\frac{\partial^i P_0(S,t)}{\partial S^i} \\ &\quad=\operatorname{e}^{-r(T-t)} \tilde{\mathbb{E}}_t^S\Big[\big(\operatorname{e}^{\sigma(Z_T-Z_t)+(r-\frac{\sigma ^2}{2})(T-t)}\big)^ig^{(i)}\big(S\operatorname{e}^{\sigma (Z_T-Z_t)+(r-\frac{\sigma^2}{2})(T-t)} \big)\Big], \end{aligned}$$

where by g (i) we mean the ith derivative. We conclude that

$$\begin{aligned} \operatorname{e}^{-r(T-t)}\inf_{x\in \mathbb{R}_{++}}\big|x^ig^{(i)}(x)\big| \le& \Big|S^i \frac {\partial^i P_0(S,t)}{\partial S^i}\Big| \\ =&\operatorname{e}^{-r(T-t)}\big|\tilde{\mathbb{E}}_t^S\big[S_T^ig^{(i)}(S_T)\big]\big| \\ \le&\operatorname{e}^{-r(T-t)}\sup_{x\in \mathbb{R}_{++}} \big|x^ig^{(i)}(x)\big|. \end{aligned}$$
(A.1)

By Assumption 3.3, the bound in (A.1) is finite, and in a similar manner we conclude that on \(\mathbb{R}_{++}\times { [0,T]}\) the terms \(|{P_{0}-SP_{0_{S}}}|,~S^{2} |{P_{0_{SS}}}|\), \(|{S^{3}P_{0_{SSS}}}|\), and \(S^{4}|{P_{0_{SSSS}}}|\) are bounded by sup x>0|g(x)−g′(x)x|, sup x>0 x 2|g″(x)|, sup x>0|x 3 g (3)(x)|, and sup x>0 x 4|g (4)(x)|, respectively. We also calculate

$$\begin{aligned} y_S^{{ (j)^{*}}}=\frac{\delta}{\gamma}H^{(j)}_{0_{SS}}-\frac{\delta(\mu -r)}{\gamma S^2\sigma^2}, \quad j=1,w, \end{aligned}$$

and from the definition of \(H_{0}^{{ (j)}}\) in (2.8) conclude, both with and without claim, that \(|{S^{2}y_{S}^{{ (j)^{*}}}}|\) is bounded in \((S,t)\in \mathbb{R}_{++}\times { [0,T]}\), and \(|{S^{2}y_{S}^{{ (j)^{*}}}}|\ge\operatorname{e}^{-rT} \varepsilon_{1}\) there. The latter follows from Assumption 3.4. Similar calculations show that \(S^{3}y_{SS}^{{ (j)^{*}}}\) and \(S^{4}y_{SSS}^{{ (j)^{*}}}\) are also bounded in \((S,t)\in \mathbb{R}_{++}\times { [0,T]}\) for j=1,w. Moreover, from (2.7) we have that

$$\begin{aligned} P_{0_{SSt}} +\frac{\sigma^2S^2}{2}P_{0_{SSSS}} +(r+2\sigma ^2)SP_{0_{SSS}}+(r+\sigma^2)P_{0_{SS}}=0. \end{aligned}$$

From the boundedness of \(S^{2}P_{0_{SS}}\), \(S^{3}P_{0_{SSS}}\), and \(S^{4}P_{0_{SSSS}}\) on \(\mathbb{R}_{++}\times { [0,T]}\), the boundedness of \(S^{2}P_{0_{SSt}}\) also follows, and we conclude that \(S^{2}y_{St}^{{ (j)^{*}}}=S^{2}P_{0_{SSt}}-\frac{r\delta(\mu-r)}{\gamma \sigma ^{2}}\) is bounded in \((S,t)\in \mathbb{R}_{++}\times { [0,T]}\) in the cases both with and without liability. □

Proof of Lemma 6.5

From (6.7) we see that for \((S,Y,t)\in\overline{\mathbf{NT_{Y}^{(j)}}},~j=1,w\),

$$\begin{aligned} \big|H^{{ (j)}}_4(S,Y,t)\big| \le\frac{1}{2}\big(Y^{{ (j)}}\big)^2\Big(\frac {3\gamma^2S}{2\delta^2y_S^{{ (j)^{*}}}} \Big)^{\frac{2}{3}} +\frac{\gamma^2(Y^{{ (j)}})^4}{12\delta^2{y_S^{{ (j)^{*}}}}^{2}} . \end{aligned}$$

We use the estimates in Lemma 4.1 and Remark 6.1 to conclude that \(H_{4}^{{ (j)}}\) is bounded in \(\overline{\mathbf{NT_{Y}^{(j)}}}\), j=1,w. Similarly, using (6.10)–(6.13), Lemma 4.1, and Remark 6.1, we can show that the terms \(|{H^{{ (j)}}_{4_{YS}}}|\), \(|{Sy_{S}^{{ (j)^{*}}}H^{{ (j)}}_{4_{Y}}}|\), \(|{S^{2}y_{S}^{{ (j)^{*}}}H^{{ (j)}}_{4_{YS}}}|\), \(|{H^{{ (j)}}_{4_{t}}}\), \(|SH^{{ (j)}}_{4_{S}}|\), \(|{S^{2}H^{{ (j)}}_{4_{SS}}}|\), \(|{S^{2}y_{SS}^{{ (j)^{*}}}H^{{ (j)}}_{4_{Y}}}|\), and \(|{S^{2} (y_{S}^{{ (j)^{*}}} )^{2}H^{{ (j)}}_{4_{YY}}}|\) are all bounded in their respective domains in both cases j=1,w.

In the case j=1 of no claim, Remark 2.2 implies \((\frac{3\gamma^{2}S^{4}\sigma^{3} (y_{S}^{{(1)^{*}}} ) ^{2}}{2\delta^{2}} )^{\frac{2}{3}} = (\frac{3(\mu-r)^{2}}{2\sigma} )^{\frac{2}{3}}\). It follows that the solution to (3.4) in the case j=1 is given by (6.17) as claimed. Thus, \(H_{2}^{{(1)}}\) is bounded, and \(H_{2_{S}}^{{(1)}}=0\). We conclude that \(H_{3}^{{(1)^{\pm}}}(S,t)= \mp M^{{(1)}}(T-t)\mp M_{1}^{{(1)}}\), as defined in (6.5), will satisfy (6.18) with M (1) big enough and \(M_{1}^{{(1)}}\) given by (6.6).

We now concentrate on the case of holding a claim (j=w). We rewrite (3.4) as \(H_{2_{t}}^{(j)}+rSH_{2_{S}}^{(j)}+\frac {\sigma^{2}S^{2}}{2} H_{2_{SS}}^{(j)}=-f(S,t)\), where \(f(S,t)=\frac{1}{2} (\frac{3\gamma^{2}S^{4}\sigma^{3} ({y^{(w)^{*}}_{S}} )^{2}}{2\delta^{2}} )^{\frac{2}{3}}\) with the final condition \(H_{2}^{(w)}(S,T)=0\). Lemma 4.1 implies that on \(\mathbb{R}_{++}\times { [0,T]}\), both f(S,t) and Sf S (S,t) are bounded. Using the standard change of variables \(S=\operatorname{e}^{x}\), \(\tau=\frac {\sigma ^{2}}{2}(T-t)\), and \(k=\frac{2r}{\sigma^{2}}\), let \({\tilde{H}}_{2}(\tau ,x) := \operatorname{e}^{\frac{1}{2}(k-1)x+\frac{1}{4}(k+1)^{2}\tau-k\tau}H_{2}^{(w)}(S,t)\). We see that \({\tilde{H}}_{2}\) satisfies a nonhomogeneous heat equation, namely

$$\begin{aligned} {\tilde{H}}_{2_\tau}(\tau,x)={\tilde{H}}_{2_{xx}}(\tau,x)+\frac{2}{\sigma ^2}\operatorname{e}^{\frac{1}{2}(k-1)x+\frac{1}{4}(k+1)^2\tau-k\tau}f(S,t), \end{aligned}$$

with zero initial condition. The solution to this equation for \((\tau,x)\in[0,\frac{\sigma^{2}}{2}T]\times \mathbb{R}\) is

$$\begin{aligned} &{\tilde{H}}_2(\tau,x)\\ &\quad=\frac{2}{\sigma^2}\int_0^\tau\int_{-\infty}^{\infty}\varPsi (x-y,\tau-s)\operatorname{e}^{\frac{1}{2}(k-1)y+\frac{1}{4}(k+1)^2s-ks}f\Big(\operatorname{e}^{y},T-\frac{2}{\sigma^2}s\Big)\,dy\,ds, \end{aligned}$$

where \(\varPsi(x,t)=\frac{1}{\sqrt{4\pi t}}\exp{ (-\frac{x^{2}}{4t} )}\) is the heat kernel. From the boundedness of f it follows that \({\tilde{H}}_{2}(\tau ,x)=O (\operatorname{e}^{\frac{1}{2}(k-1)x} )\), and we conclude that \(H_{2}^{(w)}\) is bounded on \(\mathbb{R}_{++}\times { [0,T]}\). Moreover, \({\tilde{H}}_{2_{x}}\) also satisfies a nonhomogeneous heat equation, namely

$$\begin{aligned} {\tilde{H}}_{2_{x\tau}}(\tau,x)={\tilde{H}}_{2_{xxx}}(\tau,x)+\frac{2}{\sigma^2}\operatorname{e}^{\frac{1}{2}(k-1)x+\frac{1}{4}(k+1)^2\tau-k\tau}\Big(\frac{1}{2}(k-1)f+\operatorname{e}^{x}f_S\Big)(S,t), \end{aligned}$$

with zero initial condition. Using the fact that \(\frac{\partial x}{\partial S} = \operatorname{e}^{-x}\), we calculate that

$$\begin{aligned} H_{2_S}^{(w)}(S,t)=\operatorname{e}^{-\frac{1}{2}(k-1)x-\frac{1}{4}(k+1)^2\tau+k\tau} \operatorname{e}^{-x}\Big({-}\frac{1}{2}(k-1)\tilde{H}_2+{\tilde{H}}_{2_x}\Big)(\tau,x). \end{aligned}$$

Let \(\tilde{\tilde{H}}_{2}=-\frac{1}{2}(k-1){\tilde{H}}_{2}+{\tilde{H}}_{2_{x}}\). Then \(H_{2_{S}}^{(w)}(S,t)=\operatorname{e}^{-\frac{1}{2}(k+1)x-\frac{1}{4}(k+1)^{2}\tau+k\tau }\tilde{\tilde{H}}(\tau,x)\), and \(\tilde {\tilde{H}}_{2}\) satisfies the nonhomogeneous heat equation

$$\begin{aligned} \tilde{\tilde{H}}_{2_\tau}(\tau,x)=\tilde{\tilde{H}}_{2_{xx}}(\tau,x)+\frac{2}{\sigma^2}\operatorname{e}^{\frac{1}{2}(k-1)x+\frac{1}{4}(k+1)^2\tau -k\tau} \operatorname{e}^{x} f_S(S,\tau) \end{aligned}$$

with zero initial condition. Hence,

$$\begin{aligned} &\tilde{\tilde{H}}_2(\tau,x) \\ &\quad=\frac{2}{\sigma^2}\int_0^\tau\int_{-\infty}^{\infty}\varPsi (x-y,\tau-s)\operatorname{e}^{\frac{1}{2}(k+1)y+\frac{1}{4}(k+1)^2s-ks } f_S\Big(\operatorname{e}^{y},T-\frac{2}{\sigma ^2}s\Big)\,dy\,ds. \end{aligned}$$

From the boundedness of Sf S (S,t) it follows that \(\tilde{\tilde{H}}_{2}(\tau ,x)=O(\operatorname{e}^{\frac{1}{2}(k-1)x})\), and we conclude that \(SH_{2_{S}}^{(w)}(S,t)\) is bounded on \(\mathbb{R}_{++}\times { [0,T]}\). Using Remark 6.1, it follows that \(S^{2}Y^{(w)} H_{2_{S}}^{(w)}\) is bounded there, too. Then \(H_{3}{^{(w)^{\pm}}}(S,t)=\mp M^{(w)}(T-t)\mp M_{1}^{(w)}\), as defined in (6.5), will satisfy (6.18) with M (w) big enough and \(M_{1}^{(w)}\) as defined in (6.6). In either case, \(SH_{3_{S}}^{{ (j)^{+}}}(S,t)\equiv 0\), j=1,w. □

Proof of Lemma 3.11

From Assumptions 3.8 and 3.9, all the bounds in Lemma 4.1 hold on \(\mathbb{D}\). The reader can now verify that on \(\mathbf{NT}^{\mathbf{{ (b)}}}\) the conclusion of Theorem 5.5 holds, too. Note that this proof is a replication of the original proof as all the necessary boundedness conditions in Lemma 4.1 are satisfied, and the assertion needs to be proved on a deterministic domain \(\mathbf{NT}^{\mathbf{{ (b)}}}\). To complete the proof, we have to show what happens on the boundary {S=b} of the \(\mathbf{NT}^{\mathbf{{ (b)}}}\) region. We show that on this boundary, \(\psi^{{ { (b)}^{+}}} \ge \psi^{{(1)^{+}}}\) and \(\psi^{{ { (b)}^{-}}} \le\psi^{{(1)^{-}}}\), therefore allowing us to complete the proof by continuing the trading in \(\mathbf{NT^{(1)}}\) if necessary. This defines \(Q^{{ { (b)}^{\pm}}}\), and without loss of generality, we may assume that the constant \(M_{1}^{{ (b)}}\) in the definition of \(H_{3}^{{ { (b)}^{\pm}}}\) in (6.5) satisfies

$$\begin{aligned} M_1^{{ (b)}} \ge1+M_1^{{(1)}} +\sup_{(\tilde{S},\tilde{t})\in[0,\infty )\times { [0,T]}}\tilde{S}\big|{P_{b_S}(\tilde{S},\tilde{t})}\big| \end{aligned}$$

and M (b) is big enough. We also define \(\psi^{{ { (b)}^{\pm}}}\) by setting j=b in (5.5). It then follows that if τ<T, using \(P_{b}(b,\tau)=H_{2}^{{ (b)}}(b,\tau)=0\) for ε>0 small enough, we get

$$\begin{aligned} \pm Q^{{ { (b)}^{\pm}}}(b, y, \tau) \le\pm Q^{{(1)^{\pm}}}(b, y, \tau) . \end{aligned}$$
(A.2)

We can now prove the equivalent of Theorem 3.6. Hence, on [0,τ] the proof of Theorem 3.6 holds. Namely, we have for \((t,B,y,S)\in { [0,T]}\times \mathbb{R}\times \mathbb{R}\times[0,b )\) that

$$\begin{aligned} \psi^{{ { (b)}^{+}}}(t,B,y,S) \ge& \mathbb{E}_t^{B,y,S}\big[{-} \exp{ (-\gamma B_T) } Q^{{ { (b)}^{+}}}(S_{T},y_T,T) \mathbb{I}_{\{ \tau=T\}}\big]\\ &{} -\mathbb{E}_t^{B,y,S}\big[\exp{ (-\gamma B_\tau) } Q^{{ { (b)}^{+}}}(S_{\tau },y_\tau,\tau)\mathbb{I}_{ \left\{ \tau<T\right\}}\big]\\ \ge& \mathbb{E}_t^{B,y,S} \big[U\big( \varPhi^{{ (b)}}(T, B_T, y_T,S_T)\big)\mathbb{I} _{ \left\{ \tau=T\right\}} \big]\\ &{}-\mathbb{E}_t^{B,y,S}\big[\exp{(-\gamma B_\tau) } Q^{{(1)^{+}}}(S_{\tau },y_\tau ,\tau)\mathbb{I}_{ \left\{ \tau<T\right\}}\big]\\ \ge&\mathbb{E}_t^{B,y,S} \big[U\big( \varPhi^{{ (b)}}(T, B_T, y_T,S_T)\big)\mathbb{I} _{ ( \tau=T)} \\ &{}+U\big(\varPhi^{{(1)}}(T, B_T, y_T,S_T)\big) \mathbb{I}_{ \left\{ \tau<T\right \}}\big] \\ =& \mathbb{E}_t^{B,y,S} \big[U\big( \varPhi^{{ (b)}}(T, B_T, y_T,S_T)\big)\big], \end{aligned}$$

where we have used that \((\psi^{{ { (b)}^{+}}}(t\wedge\tau,B_{t\wedge\tau}, y_{t\wedge\tau}, S_{t\wedge\tau}))\) is a supermartingale to obtain the first inequality, (A.2) to establish the second, and Theorem 3.6 with j=1 for the last inequality. Maximizing over all admissible strategies, we conclude that

$$\begin{aligned} \psi^{{ { (b)}^{+}}}(t,B,y,S) \ge V^{{ (b)}}(t,B,y,S). \end{aligned}$$

Similarly,

$$\begin{aligned} \psi^{{ { (b)}^{-}}}(t,B,y,S) \le&\mathbb{E}_t^{B,y,S}\big[{-}\exp{\big({-}\gamma \tilde{B}_T^{{ (b)}}\big)} Q^{{ { (b)}^{-}}}\big(S_T,\tilde{y}_T^{{ (j)}},T\big)\big]\\ \le&\mathbb{E}_t^{B,y,S} \big[U\big( \varPhi^{{ (b)}}(T, \tilde{B}_T^{{ (j)}}, \tilde{y}_T^{{ (j)}},S_T)\big)\big]. \end{aligned}$$

As a corollary, we conclude that Lemma 3.11 holds. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bichuch, M. Pricing a contingent claim liability with transaction costs using asymptotic analysis for optimal investment. Finance Stoch 18, 651–694 (2014). https://doi.org/10.1007/s00780-014-0233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-014-0233-z

Keywords

Mathematics Subject Classification

JEL Classification

Navigation