[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal capital and risk allocations for law- and cash-invariant convex functions

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In this paper we provide a complete solution to the existence and characterization problem of optimal capital and risk allocations for not necessarily monotone, law-invariant convex risk measures on the model space L p for any p∈[1,∞]. Our main result says that the capital and risk allocation problem always admits a solution via contracts whose payoffs are defined as increasing Lipschitz-continuous functions of the aggregate risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acciaio, B.: Optimal risk sharing with non-monotone monetary functionals. Finance Stoch. 11, 267–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrieu, P., El Karoui, N.: Optimal derivatives design under dynamic risk measures. In: Yin, G., Zhang, Q. (eds.) Mathematics of Finance. Contemporary Mathematics, pp. 13–25. Am. Math. Soc., Providence (2004)

    Google Scholar 

  4. Barrieu, P., El Karoui, N.: Inf-convolution of risk measures and optimal risk transfer. Finance Stoch. 9, 269–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biagini, S., Frittelli, M.: On continuity properties and dual representation of convex and monotone functionals on Fréchet lattices. Working Paper (2006). http://www.unifi.it/dmd/persone/m.frittelli/Selected%20publications-WEB.htm

  6. Burgert, C., Rüschendorf, L.: Allocations of risk and equilibrium in markets with finitely many traders. Insur. Math. Econ. 42, 177–188 (2008)

    Article  MATH  Google Scholar 

  7. Cheridito, P., Li, T.: Risk measures on Orlicz hearts. Math. Finance (2008, forthcoming)

  8. Cherny, A., Kupper, M.: Divergence utilities. VIF Working Paper (2007). http://www.vif.ac.at/kupper

  9. Dana, R.-A., Scarsini, M.: Optimal risk sharing with background risk. J. Econ. Theory 133, 132–176 (2007)

    Article  MathSciNet  Google Scholar 

  10. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  11. Filipović, D., Kupper, M.: Equilibrium prices for monetary utility functions. Int. J. Theor. Appl. Finance (2008, forthcoming)

  12. Filipović, D., Kupper, M.: Optimal capital and risk transfers for group diversification. Math. Finance 18, 55–76 (2007)

    Google Scholar 

  13. Filipović, D., Kupper, M.: On the group level Swiss Solvency Test. Mitt. Schweiz. Aktuarver. 1, 97–115 (2007)

    Google Scholar 

  14. Filipović, D., Kupper, M.: Monotone and cash-invariant convex functions and hulls. Insur. Math. Econ. 41, 1–16 (2007)

    Article  MATH  Google Scholar 

  15. Filipović, D., Svindland, G.: Convex risk measures beyond bounded risks, or the canonical model space for law-invariant risk measures is L 1. VIF Working Paper (2007). http://www.vif.ac.at/filipovic

  16. Föllmer, H., Schied, A.: Stochastic Finance, An Introduction in Discrete Time, 2nd edn. de Gruyter Studies in Mathematics, vol. 27. de Gruyter, Berlin (2004)

    MATH  Google Scholar 

  17. Frittelli, M., Rosazza Gianin, E.: Law-invariant convex risk measures. Adv. Math. Econ. 7, 33–46 (2005)

    Article  Google Scholar 

  18. Jouini, E., Schachermayer, W., Touzi, N.: Law-invariant risk measures have the Fatou property. Adv. Math. Econ. 9, 49–71 (2006)

    Article  MathSciNet  Google Scholar 

  19. Jouini, E., Schachermayer, W., Touzi, N.: Optimal risk sharing for law-invariant monetary utility functions. Math. Finance 18, 269–292 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaina, M., Rüschendorf, L.: On convex risk measures on L p. Working Paper (2007). http://www.stochastik.uni-freiburg.de/~rueschendorf/preprints/Finan.html

  21. Ludkovski, M., Rüschendorf, L.: On comonotonicity of Pareto optimal risk sharing. Stat. Prob. Lett. (2008, forthcoming)

  22. Landsberger, M., Meilijson, I.: Comonotone allocations, Bickel–Lehmann dispersion and the Arrow–Pratt measure of risk aversion. Ann. Oper. Res. 52, 97–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Filipović.

Additional information

Filipović is supported by WWTF (Vienna Science and Technology Fund). Svindland gratefully acknowledges financial support from Munich Re Grant for doctoral students and hospitality of the Research Unit of Financial and Actuarial Mathematics, Vienna University of Technology. We thank Beatrice Acciaio and Walter Schachermayer for fruitful discussions and an anonymous referee for helpful remarks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipović, D., Svindland, G. Optimal capital and risk allocations for law- and cash-invariant convex functions. Finance Stoch 12, 423–439 (2008). https://doi.org/10.1007/s00780-008-0069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-008-0069-5

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation