Abstract
Lévy driven term structure models have become an important subject in the mathematical finance literature. This paper provides a comprehensive analysis of the Lévy driven Heath–Jarrow–Morton type term structure equation. This includes a full proof of existence and uniqueness in particular, which seems to have been lacking in the finance literature so far.
Similar content being viewed by others
References
Albeverio, S., Mandrekar, V., Rüdiger, B.: Existence of mild solutions for stochastic differential equations and semilinear equations with non Gaussian Lévy noise (2006), http://www.uni-koblenz.de/~ruediger/AMR12nonM.pdf
Barndorff-Nielsen, O.E.: Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. Ser. A 353, 401–419 (1977)
Baudoin, F., Teichmann, J.: Hypoellipticity in infinite dimensions and an application to interest rate theory. Ann. Appl. Probab. 15, 1765–1777 (2005)
Bhar, R., Chiarella, C.: Transformation of Heath–Jarrow–Morton models to Markovian systems. Eur. J. Finance 3, 1–26 (1997)
Björk, T., Svensson, L.: On the existence of finite dimensional realizations for nonlinear forward rate models. Math. Finance 11, 205–243 (2001)
Björk, T., Di Masi, G., Kabanov, Y., Runggaldier, W.: Towards a general theory of bond markets. Finance Stoch. 1, 141–174 (1997)
Björk, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7, 211–239 (1997)
Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin (2006)
Carr, P., Geman, H., Madan, D., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)
Chiarella, C., Kwon, O.K.: Forward rate dependent Markovian transformations of the Heath–Jarrow–Morton term structure model. Finance Stoch. 5, 237–257 (2001)
Chiarella, C., Kwon, O.K.: Finite dimensional affine realizations of HJM models in terms of forward rates and yields. Rev. Deriv. Res. 6(3), 129–155 (2003)
Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, London (2004)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, New York (1992)
Davies, E.B.: Quantum Theory of Open Systems. Academic, London (1976)
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)
Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1, 281–299 (1995)
Eberlein, E., Kluge, W.: Exact pricing formulae for caps and swaptions in a Lévy term structure model. J. Comput. Finance 9(2), 99–125 (2006)
Eberlein, E., Kluge, W.: Valuation of floating range notes in Lévy term structure models. Math. Finance 16, 237–254 (2006)
Eberlein, E., Kluge, W.: Calibration of Lévy term structure models. In: Fu, M., Jarrow, R.A., Yen, J.-Y., Elliott, R.J. (eds.) Advances in Mathematical Finance: In Honor of Dilip Madan, pp. 155–180. Birkhäuser, Basel (2007)
Eberlein, E., Özkan, F.: The defaultable Lévy term structure: ratings and restructuring. Math. Finance 13, 277–300 (2003)
Eberlein, E., Raible, S.: Term structure models driven by general Lévy processes. Math. Finance 9, 31–53 (1999)
Eberlein, E., Jacod, J., Raible, S.: Lévy term structure models: no-arbitrage and completeness. Finance Stoch. 9, 67–88 (2005)
Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)
Filipović, D.: Consistency Problems for Heath–Jarrow–Morton Interest Rate Models. Springer, Berlin (2001)
Filipović, D., Teichmann, J.: Existence of invariant manifolds for stochastic equations in infinite dimension. J. Funct. Anal. 197, 398–432 (2003)
Hausenblas, E.: SPDEs driven by Poisson random measure: existence and uniqueness. Electron. J. Probab. 11, 1496–1546 (2005)
Hausenblas, E.: SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results. Probab. Theory Relat. Fields (2007, forthcoming)
Hausenblas, E., Seidler, J.: A note on maximal inequality for stochastic convolutions. Czechoslov. Math. J. 51(126), 785–790 (2001)
Hausenblas, E., Seidler, J.: Stochastic convolutions driven by martingales: maximal inequalities and exponential integrability. Stoch. Anal. Appl. (2007, forthcoming)
Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)
Hyll, M.: Affine term structures and short-rate realizations of forward rate models driven by jump-diffusion processes. In: Essays on the Term Structure of Interest Rates, Ph.D. thesis, Stockholm School of Economics (2000)
Inui, K., Kijima, M.: A Markovian framework in multi-factor Heath–Jarrow–Morton models. J. Financ. Quant. Anal. 33, 423–440 (1998)
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)
Jakubowski, J., Zabczyk, J.: Exponential moments for HJM models with jumps. Finance Stoch. 11, 429–445 (2007)
Jarrow, A., Madan, D.B.: Option pricing using the term structure of interest rates to hedge systematic discontinuities in asset returns. Math. Finance 5, 311–336 (1995)
Jeffrey, A.: Single factor Heath–Jarrow–Morton term structure models based on Markov spot interest rate dynamics. J. Financ. Quant. Anal. 30, 619–642 (1995)
Knoche, C.: SPDEs in infinite dimensions with Poisson noise. C. R. Math. Acad. Sci. Paris, Ser. I 339, 647–652 (2004)
Knoche, C.: Mild solutions of SPDEs driven by Poisson noise in infinite dimensions and their dependence on initial conditions. Ph.D. thesis, University of Bielefeld (2005)
Kotelenez, P.: A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8, 139–151 (1982)
Küchler, U., Tappe, S.: Bilateral Gamma distributions and processes in financial mathematics. Stoch. Process. Appl. (2007, forthcoming)
Madan, D.B., Purely discontinuous asset pricing processes. In: Jouini, E., Cvitanič, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 105–153. Cambridge University Press, Cambridge (2001)
Métivier, M.: Semimartingales. de Gruyter, Berlin (1982)
Meyer-Brandis, T.: Differential equations driven by Lévy white noise in spaces of Hilbert space valued stochastic distributions. Preprint, University of Oslo, www.math.uio.no/eprint/pure_math/2005/09-05.pdf
Musiela, M.: Stochastic PDEs and term structure models. J. Int. Finance, IGR-AFFI, La Baule (1993)
Özkan, F., Schmidt, T.: Credit risk with infinite dimensional Lévy processes. Stat. Decis. 23, 281–299 (2005)
Protter, P.: Stochastic Integration and Differential Equations, 2nd edn., Version 2.1. Springer, Berlin (2005)
Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: Evolution Equations Approach. Cambridge University Press, Cambridge (2007, to appear)
Peszat, S., Zabczyk, J.: Heath–Jarrow–Morton–Musiela equation of bond market. Preprint IMPAN 677, Warsaw (2007), www.impan.gov.pl/EN/Preprints/index.html
Raible, S.: Lévy processes in finance: theory, numerics, and empirical facts. Ph.D. thesis, University of Freiburg (2000)
Ritchken, P., Sankarasubramanian, L.: Volatility structures of forward rates and the dynamics of the term structure. Math. Finance 5, 55–72 (1995)
Rüdiger, B.: Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces. Stoch. Stoch. Rep. 76, 213–242 (2004)
Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, Cambridge (1999)
Shirakawa, H.: Interest rate option pricing with Poisson-Gaussian forward rate curve processes. Math. Finance 1(4), 77–94 (1991)
Sz.-Nagy, B., Foiaş, C.: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam (1970)
Tehranchi, M.: A note on invariant measures for HJM models. Finance Stoch. 9, 389–398 (2005)
van Gaans, O.: A series approach to stochastic differential equations with infinite dimensional noise. Integral Equ. Oper. Theory 51(3), 435–458 (2005)
van Gaans, O.: Invariant measures for stochastic evolution equations with Lévy noise. Technical Report, Leiden University (2005), www.math.leidenuniv.nl/~vangaans/publications.html
Werner, D.: Funktionalanalysis. Springer, Berlin (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Filipović, D., Tappe, S. Existence of Lévy term structure models. Finance Stoch 12, 83–115 (2008). https://doi.org/10.1007/s00780-007-0054-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-007-0054-4
Keywords
- Forward curve spaces
- Lévy term structure models
- Stochastic integration in Hilbert spaces
- Strong, weak and mild solutions of infinite dimensional SDEs