[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Existence of Lévy term structure models

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Lévy driven term structure models have become an important subject in the mathematical finance literature. This paper provides a comprehensive analysis of the Lévy driven Heath–Jarrow–Morton type term structure equation. This includes a full proof of existence and uniqueness in particular, which seems to have been lacking in the finance literature so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., Mandrekar, V., Rüdiger, B.: Existence of mild solutions for stochastic differential equations and semilinear equations with non Gaussian Lévy noise (2006), http://www.uni-koblenz.de/~ruediger/AMR12nonM.pdf

  2. Barndorff-Nielsen, O.E.: Exponentially decreasing distributions for the logarithm of particle size. Proc. R. Soc. Lond. Ser. A 353, 401–419 (1977)

    Article  Google Scholar 

  3. Baudoin, F., Teichmann, J.: Hypoellipticity in infinite dimensions and an application to interest rate theory. Ann. Appl. Probab. 15, 1765–1777 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhar, R., Chiarella, C.: Transformation of Heath–Jarrow–Morton models to Markovian systems. Eur. J. Finance 3, 1–26 (1997)

    Article  Google Scholar 

  5. Björk, T., Svensson, L.: On the existence of finite dimensional realizations for nonlinear forward rate models. Math. Finance 11, 205–243 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Björk, T., Di Masi, G., Kabanov, Y., Runggaldier, W.: Towards a general theory of bond markets. Finance Stoch. 1, 141–174 (1997)

    Article  MATH  Google Scholar 

  7. Björk, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7, 211–239 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carmona, R., Tehranchi, M.: Interest Rate Models: An Infinite Dimensional Stochastic Analysis Perspective. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Carr, P., Geman, H., Madan, D., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  10. Chiarella, C., Kwon, O.K.: Forward rate dependent Markovian transformations of the Heath–Jarrow–Morton term structure model. Finance Stoch. 5, 237–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chiarella, C., Kwon, O.K.: Finite dimensional affine realizations of HJM models in terms of forward rates and yields. Rev. Deriv. Res. 6(3), 129–155 (2003)

    Article  MATH  Google Scholar 

  12. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, London (2004)

    MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  14. Davies, E.B.: Quantum Theory of Open Systems. Academic, London (1976)

    MATH  Google Scholar 

  15. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1, 281–299 (1995)

    Article  MATH  Google Scholar 

  17. Eberlein, E., Kluge, W.: Exact pricing formulae for caps and swaptions in a Lévy term structure model. J. Comput. Finance 9(2), 99–125 (2006)

    Google Scholar 

  18. Eberlein, E., Kluge, W.: Valuation of floating range notes in Lévy term structure models. Math. Finance 16, 237–254 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eberlein, E., Kluge, W.: Calibration of Lévy term structure models. In: Fu, M., Jarrow, R.A., Yen, J.-Y., Elliott, R.J. (eds.) Advances in Mathematical Finance: In Honor of Dilip Madan, pp. 155–180. Birkhäuser, Basel (2007)

    Google Scholar 

  20. Eberlein, E., Özkan, F.: The defaultable Lévy term structure: ratings and restructuring. Math. Finance 13, 277–300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Eberlein, E., Raible, S.: Term structure models driven by general Lévy processes. Math. Finance 9, 31–53 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Eberlein, E., Jacod, J., Raible, S.: Lévy term structure models: no-arbitrage and completeness. Finance Stoch. 9, 67–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  24. Filipović, D.: Consistency Problems for Heath–Jarrow–Morton Interest Rate Models. Springer, Berlin (2001)

    MATH  Google Scholar 

  25. Filipović, D., Teichmann, J.: Existence of invariant manifolds for stochastic equations in infinite dimension. J. Funct. Anal. 197, 398–432 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hausenblas, E.: SPDEs driven by Poisson random measure: existence and uniqueness. Electron. J. Probab. 11, 1496–1546 (2005)

    MathSciNet  Google Scholar 

  27. Hausenblas, E.: SPDEs driven by Poisson random measure with non Lipschitz coefficients: existence results. Probab. Theory Relat. Fields (2007, forthcoming)

  28. Hausenblas, E., Seidler, J.: A note on maximal inequality for stochastic convolutions. Czechoslov. Math. J. 51(126), 785–790 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hausenblas, E., Seidler, J.: Stochastic convolutions driven by martingales: maximal inequalities and exponential integrability. Stoch. Anal. Appl. (2007, forthcoming)

  30. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  31. Hyll, M.: Affine term structures and short-rate realizations of forward rate models driven by jump-diffusion processes. In: Essays on the Term Structure of Interest Rates, Ph.D. thesis, Stockholm School of Economics (2000)

  32. Inui, K., Kijima, M.: A Markovian framework in multi-factor Heath–Jarrow–Morton models. J. Financ. Quant. Anal. 33, 423–440 (1998)

    Article  Google Scholar 

  33. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)

    MATH  Google Scholar 

  34. Jakubowski, J., Zabczyk, J.: Exponential moments for HJM models with jumps. Finance Stoch. 11, 429–445 (2007)

    Article  MathSciNet  Google Scholar 

  35. Jarrow, A., Madan, D.B.: Option pricing using the term structure of interest rates to hedge systematic discontinuities in asset returns. Math. Finance 5, 311–336 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Jeffrey, A.: Single factor Heath–Jarrow–Morton term structure models based on Markov spot interest rate dynamics. J. Financ. Quant. Anal. 30, 619–642 (1995)

    Article  Google Scholar 

  37. Knoche, C.: SPDEs in infinite dimensions with Poisson noise. C. R. Math. Acad. Sci. Paris, Ser. I 339, 647–652 (2004)

    MATH  MathSciNet  Google Scholar 

  38. Knoche, C.: Mild solutions of SPDEs driven by Poisson noise in infinite dimensions and their dependence on initial conditions. Ph.D. thesis, University of Bielefeld (2005)

  39. Kotelenez, P.: A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8, 139–151 (1982)

    MATH  MathSciNet  Google Scholar 

  40. Küchler, U., Tappe, S.: Bilateral Gamma distributions and processes in financial mathematics. Stoch. Process. Appl. (2007, forthcoming)

  41. Madan, D.B., Purely discontinuous asset pricing processes. In: Jouini, E., Cvitanič, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 105–153. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  42. Métivier, M.: Semimartingales. de Gruyter, Berlin (1982)

    MATH  Google Scholar 

  43. Meyer-Brandis, T.: Differential equations driven by Lévy white noise in spaces of Hilbert space valued stochastic distributions. Preprint, University of Oslo, www.math.uio.no/eprint/pure_math/2005/09-05.pdf

  44. Musiela, M.: Stochastic PDEs and term structure models. J. Int. Finance, IGR-AFFI, La Baule (1993)

  45. Özkan, F., Schmidt, T.: Credit risk with infinite dimensional Lévy processes. Stat. Decis. 23, 281–299 (2005)

    Article  MATH  Google Scholar 

  46. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn., Version 2.1. Springer, Berlin (2005)

    Google Scholar 

  47. Peszat, S., Zabczyk, J.: Stochastic Partial Differential Equations with Lévy Noise: Evolution Equations Approach. Cambridge University Press, Cambridge (2007, to appear)

  48. Peszat, S., Zabczyk, J.: Heath–Jarrow–Morton–Musiela equation of bond market. Preprint IMPAN 677, Warsaw (2007), www.impan.gov.pl/EN/Preprints/index.html

  49. Raible, S.: Lévy processes in finance: theory, numerics, and empirical facts. Ph.D. thesis, University of Freiburg (2000)

  50. Ritchken, P., Sankarasubramanian, L.: Volatility structures of forward rates and the dynamics of the term structure. Math. Finance 5, 55–72 (1995)

    Article  MATH  Google Scholar 

  51. Rüdiger, B.: Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces. Stoch. Stoch. Rep. 76, 213–242 (2004)

    MATH  MathSciNet  Google Scholar 

  52. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, Cambridge (1999)

  53. Shirakawa, H.: Interest rate option pricing with Poisson-Gaussian forward rate curve processes. Math. Finance 1(4), 77–94 (1991)

    Article  MATH  Google Scholar 

  54. Sz.-Nagy, B., Foiaş, C.: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam (1970)

    Google Scholar 

  55. Tehranchi, M.: A note on invariant measures for HJM models. Finance Stoch. 9, 389–398 (2005)

    Article  MathSciNet  Google Scholar 

  56. van Gaans, O.: A series approach to stochastic differential equations with infinite dimensional noise. Integral Equ. Oper. Theory 51(3), 435–458 (2005)

    Article  MATH  Google Scholar 

  57. van Gaans, O.: Invariant measures for stochastic evolution equations with Lévy noise. Technical Report, Leiden University (2005), www.math.leidenuniv.nl/~vangaans/publications.html

  58. Werner, D.: Funktionalanalysis. Springer, Berlin (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Filipović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipović, D., Tappe, S. Existence of Lévy term structure models. Finance Stoch 12, 83–115 (2008). https://doi.org/10.1007/s00780-007-0054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-007-0054-4

Keywords

Mathematics Subject Classification (2000)

JEL

Navigation