[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The cross-interval price impact model and its empirical analysis on cryptocurrency order book

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

The demand for high-frequency algorithmic trading in the cryptocurrency markets is driving the research of price impact mechanisms. We propose the cross-interval price impact model (CIPIM) to explore the advanced or delayed price impact of order book events. The results of the empirical analysis show that neural network structures such as long short-term memory (LSTM) as a specific implementation of CIPIM obtain better concurrent interpretation on price impact than order flow imbalance (OFI) in Cont et al. (J Financ Economet 12(1):47–88, 2014). Meanwhile, the classification version of CIPIM that predicts the direction of Bitcoin price changes tends to work to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See more details about random dropout in Hinton et al. [11] and Srivastava et al. [22].

  2. LSTM can be formally formulated as:

    $$ \begin{array}{@{}rcl@{}} \mathbf{z}_{t} &=& \sigma (\mathbf{W}_{z} \cdot [\mathbf{h}_{t-\delta_{t}}^{\top}, \mathbf{x}_{t}^{\top}]^{\top} + \mathbf{b}_{z}), \\ \mathbf{i}_{t} &=& \sigma (\mathbf{W}_{i} \cdot [\mathbf{h}_{t-\delta_{t}}^{\top}, \mathbf{x}_{t}^{\top}]^{\top} + \mathbf{b}_{i}), \\ \mathbf{o}_{t} &=& \sigma (\mathbf{W}_{o} \cdot [\mathbf{h}_{t-\delta_{t}}^{\top}, \mathbf{x}_{t}^{\top}]^{\top} + \mathbf{b}_{o}), \\ \tilde{\mathbf{c}}_{t} &=& \tanh (\mathbf{W}_{c} \cdot [\mathbf{h}_{t-\delta_{t}}^{\top}, \mathbf{x}_{t}^{\top}]^{\top} + \mathbf{b}_{c}), \\ \mathbf{c}_{t} &=& \mathbf{z}_{t} * \mathbf{c}_{t-\delta_{t}} + \mathbf{i}_{t} * \tilde{\mathbf{c}}_{t}, \\ \mathbf{h}_{t} &=& \mathbf{o}_{t} * \tanh(\mathbf{c}_{t}). \end{array} $$

    See Hochreiter and Schmidhuber [12] for more details. Combining the equation (3), \(\{\mathbf {x}_{t}\}_{t\in [t_{k-1},t_{k}]}\) forms the input variable HX. t and tδt denote the adjacent moments in [tk− 1,tk]. The output of formula (3) \(\mathbf {h}_{\text {LSTM}}=\mathbf {h}_{t_{k}}\). The parameters of LSTM can be rewritten as Θ = {Wz,bz,Wi,bi,Wo,bo,Wc,bc}.

  3. The subscript t can be considered as the index of the quotes data. In this case, δt = 1, and nk = tktk− 1 + 1 counts the number of quote events in [tk− 1,tk]. We will use this notation in the following.

References

  1. Biais B, Hillion P, Spatt C (1995) An empirical analysis of the limit order book and the order flow in the Paris Bourse. J Finance 50(5):1655–1689

    Article  Google Scholar 

  2. Bianchi D, Dickerson A (2018) Trading volume in cryptocurrency markets. Available at SSRN 3239670

  3. Bouchaud JP (2010) Price impact. In Encyclopedia of Quantitative Finance, Cont R (Ed.)

  4. Chordia T, Subrahmanyam A (2004) Order imbalance and individual stock returns: Theory and evidence. J Financ Econ 72(3):485–518

    Article  Google Scholar 

  5. Cont R, Kukanov A, Stoikov S (2014) The price impact of order book events. J Financ Economet 12(1):47–88

    Article  Google Scholar 

  6. Farmer JD, Gillemot L, Lillo F, Mike S, Sen A (2004) What really causes large price changes? Quant Finance 4(4):383–397

    Article  MATH  Google Scholar 

  7. Eisler Z, Bouchaud JP, Kockelkoren J (2012) The price impact of order book events: market orders, limit orders and cancellations. Quant Finance 12(9):1395–1419

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang F, Chung W, Ventre C, Basios M, Kanthan L, Li L, Wu F (2021) Ascertaining price formation in cryptocurrency markets with machine learning. Eur J Financ (online)

  9. Hasbrouck J (1991) Measuring the information content of stock trades. J Finance 46(1):179–207

    Article  Google Scholar 

  10. Hiemstra C, Jones JD (1994) Testing for linear and nonlinear Granger causality in the stock price-volume relation. J Finance 49(5):1639–1664

    Google Scholar 

  11. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580

  12. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  13. Karpoff JM (1987) The relation between price changes and trading volume: A survey. J Financ Quant Anal 22(1):109–126

    Article  Google Scholar 

  14. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980

  15. McIntyre KH, Harjes K (2016) Order flow and the bitcoin spot rate. Appl Econ Finance 3 (3):136–147

    Article  Google Scholar 

  16. Mu GH, Zhou WX, Chen W, Kertész J (2010) Order flow dynamics around extreme price changes on an emerging stock market. New J Phys 12(7):075037

    Article  Google Scholar 

  17. Potters M, Bouchaud JP (2003) More statistical properties of order books and price impact. Phys A 324(1-2):133–140

    Article  MATH  Google Scholar 

  18. Rosenow B (2002) Fluctuations and market friction in financial trading. Internat J Modern Phys C 13(03):419–425

    Article  Google Scholar 

  19. Schlag C, Stoll H (2005) Price impacts of options volume. J Financ Mark 8(1):69–87

    Article  Google Scholar 

  20. Silantyev E (2019) Order flow analysis of cryptocurrency markets. Digital Finance 1(1):191–218

    Article  Google Scholar 

  21. Sirignano J, Cont R (2019) Universal features of price formation in financial markets: perspectives from deep learning. Quant Finance 19(9):1449–1459

    Article  MathSciNet  MATH  Google Scholar 

  22. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  23. Tashiro D, Matsushima H, Izumi K, Sakaji H (2019) Encoding of high-frequency order information and prediction of short-term stock price by deep learning. Quant Finance 19(9):1499–1506

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang Q, Teng B, Hao Q, Shi Y (2021) High-frequency statistical arbitrage strategy based on stationarized order flow imbalance. Procedia Computer Science 187:518–523

    Article  Google Scholar 

  25. Weber P, Rosenow B (2005) Order book approach to price impact. Quant Finance 5(4):357–364

    Article  MATH  Google Scholar 

  26. Zhang Z, Zohren S, Roberts S (2019) Deeplob: Deep convolutional neural networks for limit order books. IEEE Trans Signal Process 67(11):3001–3012

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the three anonymous reviewers for reviewing this article for providing valuable suggestions.

Funding

This work is supported by the National Key R&D Program of China (Grant No. 2018YFA0703900), and the National Natural Science Foundation of China (Grant Nos. 11871309, 11371226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Shi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, B., Wang, S., Ren, Q. et al. The cross-interval price impact model and its empirical analysis on cryptocurrency order book. Pers Ubiquit Comput 27, 1585–1593 (2023). https://doi.org/10.1007/s00779-021-01651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-021-01651-z

Keywords

Navigation