[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

It is believed that climate change will cause the extinction of many species in the near future. In this study, we assessed the impact of climate change on the climatic suitability of the Persian oak in Zagros forests in southwest Iran, by simulating their conditions under four climate change scenarios in the 2030s, 2050s, 2070s, and 2080s. Additionally, we evaluated the predictive performance of different modelling algorithms by projecting the geographic distribution of Persian oak, using a block cross-validation technique. According to the results, the Persian oak shows a stronger response to temperature, particularly the maximum temperature of the warmest month, rather than precipitation variables. This indicates that temperature has a powerful control over the geographic distribution of the Persian oak. Based on a comparison of the Persian oak’s current climatic suitability and future projections, regardless of the chosen climatic scenarios, there will be an upward shift in its climatic suitability. However, an upward shift under the pessimistic scenarios was greater than the optimistic ones. The results also indicate that an ensemble of all models had a higher accuracy than single models. Despite the agreement between current climate condition predictions (mean correlation of 0.94), the projection of different algorithms for future periods is highly variable (mean correlation of 0.71). Thus, the ensemble approach was used to reduce the uncertainty of modelling, favouring the consensus of all models for future projection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarts G, Fieberg J, Matthiopoulos J (2012) Comparative interpretation of count, presence-absence and point methods for species distribution models: species distribution as spatial point process. Methods Ecol Evol 3:177–187

    Article  Google Scholar 

  • Amiri MJ, Eslamian SS (2010) Investigation of climate change in Iran. J Environ Sci Technol 3:208–216

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  Google Scholar 

  • Araujo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Chang Biol 11:1504–1513

    Article  Google Scholar 

  • Bessa-Gomes C, Petrucci-Fonseca F (2003) Using artificial neural networks to assess wolf distribution patterns in Portugal. In: Animal conservation forum. Cambridge University Press, pp 221–229

  • Bradshaw WE (2006) Climate change: evolutionary response to rapid climate change. Science 312:1477–1478. https://doi.org/10.1126/science.1127000

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. https://doi.org/10.1126/science.1206432

    Article  Google Scholar 

  • Choe H, Thorne JH, Seo C (2016) Mapping national plant biodiversity patterns in South Korea with the MARS species distribution model. PLoS One 11:e0149511. https://doi.org/10.1371/journal.pone.0149511

    Article  Google Scholar 

  • Cutler DR, Edwards TC, Beard KH et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792

    Article  Google Scholar 

  • Development Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Diniz-Filho JAF, Mauricio Bini L, Fernando Rangel T et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Elith J, Franklin J (2013) Species distribution modeling. In: Levin SA (ed) Encyclopedia of biodiversity, 2nd edn. Academic Press, Waltham, pp 692–705

  • Elith J, Leathwick J (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers Distrib 13:265–275

    Article  Google Scholar 

  • Elith J, Leathwick J (2009) The contribution of species distribution modelling to conservation prioritization. In: Spatial conservation prioritization: quantitative methods. pp 70–93

  • Elith J, Ferrier S, Huettmann F, Leathwick J (2005) The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Model 186(3):280–289

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, McC, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813. https://doi.org/10.2307/20143253

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Forester BR, DeChaine EG, Bunn AG (2013) Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers Distrib 19:1480–1495

    Article  Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Friedman JH (2002) Stochastic gradient boosting. Computational Statistics & Data Analysis 38:367–378

    Article  Google Scholar 

  • Graham CH, Loiselle BA, Velásquez-Tibatá J, Cuesta F (2011) Species distribution modeling and the challenge of predicting future distributions. Climate change and biodiversity in the Tropical Andes Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), São José dos Campos and Paris 295–310

  • Grenouillet G, Buisson L, Casajus N, Lek S (2011) Ensemble modelling of species distribution: the effects of geographical and environmental ranges. Ecography 34:9–17

    Article  Google Scholar 

  • Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK et al (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hosseini A, Asghari S (2012) Investigating the relation between climatic variables and the dying occurance in Iranian oak. In: National Conference on Desertification and Sustainable Development of Iranian Desert Wetlands. pp 1–5

  • Keith DA, Mahony M, Hines H et al (2014) Detecting extinction risk from climate change by IUCN Red List criteria. Conserv Biol 28:810–819

    Article  Google Scholar 

  • Leathwick JR, Elith J, Hastie T (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol Model 199:188–196

    Article  Google Scholar 

  • Lek S, Guégan JF (1999) Artificial neural networks as a tool in ecological modelling, an introduction. Ecol Model 120:65–73

    Article  Google Scholar 

  • Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014) Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manag 146:69–83

    Article  Google Scholar 

  • Loghmanpour M, Vardanian Z, Kiadaliri H, Elahi M (2012) To review climate change effects on basic resources (a case study of these effects on Zagros forests). In: International Conference on Applied Life Sciences. InTech

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall

  • Miller JA, Holloway P (2015) Incorporating movement in species distribution models. Progress in Physical Geography; London 39:837–849. https://doi.org/10.1177/0309133315580890

  • Minaei M, Irannezhad M (2018) Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades. Theor Appl Climatol 131(1–2):167–179

    Article  Google Scholar 

  • Minaei, M., Shafizadeh-Moghadam, H., Tayyebi, A. (2018). Spatiotemporal nexus between the pattern of land degradation and land cover dynamics in Iran. Land Degradation Dev, (September 2017), 1–10. https://doi.org/10.1002/ldr.3007

  • Mirabolfathy M (2013) Outbreak of charcoal disease on Quercus spp. and Zelkova carpinifolia trees in forests of Zagros and Alborz mountains in Iran. Iranian Journal of Plant Pathology

  • Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508

    Article  Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Naimi B, Hamm NA, Groen TA et al (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191–203

    Article  Google Scholar 

  • Ogawa-Onishi Y, Berry PM, Tanaka N (2010) Assessing the potential impacts of climate change and their conservation implications in Japan: a case study of conifers. Biol Conserv 143:1728–1736

    Article  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nat Clim Chang 5:215–224

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Pearson R (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113. https://doi.org/10.1016/j.tree.2005.11.022

    Article  Google Scholar 

  • Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154:289–300

    Article  Google Scholar 

  • Peters J, Baets BD, Verhoest NEC, Samson R, Degroeve S, Becker PD, Huybrechts W (2007) Random forests as a tool for ecohydrological distribution modelling. Ecol Model 207:304–318. https://doi.org/10.1016/j.ecolmodel.2007.05.011

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the Twenty-First International Conference on Machine Learning. ACM, p. 83

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pourhashemi M, Mohajer MRM, Zobeiri M, Amiri GZ, Panahi P (2004) Identification of forest vegetation units in support of government management objectives in Zagros forests, Iran. Scand J For Res 19:72–77

    Article  Google Scholar 

  • Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281

    Article  Google Scholar 

  • Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40:913–929

    Article  Google Scholar 

  • Sabeti H (1976) Forests, trees and shrubs of Iran. Ministry of Agriculture and Natural Resources, Tehran

    Google Scholar 

  • Sagheb-Talebi K, Pourhashemi M, Sajedi T (2014) Forests of Iran: a treasure from the past, a hope for the future. Springer

  • Salehi A, Eriksson LO (2010) A management model for Persian oak—a model for management of mixed coppice stands of semiarid forests of Persian oak. Mathematical and Computational Forestry & Natural Resource Sciences 2:20

    Google Scholar 

  • Shafizadeh-Moghadam H, Asghari A, Tayyebi A, Taleai M (2017) Coupling machine learning, tree-based and statistical models with cellular automata to simulate urban growth. Comput Environ Urban Syst 64:297–308

    Article  Google Scholar 

  • Shafizadeh-Moghadam H, Valavi R, Shahabi H, Chapi K, Shirzadi A (2018) Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J Environ Manag 217:1–11

    Article  Google Scholar 

  • Solaymani HR, Jabbari S (2015) Impacts and vulnerabilities of climate change and socio-economic challenges on oak forest deterioration—west of Iran

  • Sorte FAL, Frank RT III (2007) Poleward shifts in winter ranges of North American birds. Ecology 88:1803–1812

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Article  Google Scholar 

  • Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Chang Biol 10:2020–2027

    Article  Google Scholar 

  • Thuiller W (2007) Biodiversity: climate change and the ecologist. Nature 448:550–552

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Pyšek P et al (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250. https://doi.org/10.1111/j.1365-2486.2005.001018.x

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9:137–152. https://doi.org/10.1016/j.ppees.2007.09.004

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R, Breiner F (2017) biomod2: ensemble platform for species distribution modeling. R Package Version 3:3–7 https://CRAN.R-project.org/package=biomod2

    Google Scholar 

  • Wessely J, Hülber K, Gattringer A, Kuttner M, Moser D, Rabitsch W, Schindler S, Dullinger S, Essl F (2017) Habitat-based conservation strategies cannot compensate for climate-change-induced range loss. Nat Clim Chang 7:823–827. https://doi.org/10.1038/nclimate3414

    Article  Google Scholar 

  • Zohrevandi AA, Pourbabaei H, Akhavan R, Bonad AE (2016) Determination of appropriate grid dimension and sampling plot size for assessment of woody species diversity in Zagros forest, Iran. Biodiversitas Journal of Biological Diversity 17:24–30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Shafizadeh-Moghadam.

Electronic supplementary material

ESM 1

(DOCX 907 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valavi, R., Shafizadeh-Moghadam, H., Matkan, A. et al. Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theor Appl Climatol 137, 1015–1025 (2019). https://doi.org/10.1007/s00704-018-2625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2625-z