Abstract
Gridded daily precipitation observations over the contiguous USA are used to investigate the past observed changes in the frequency and magnitude of heavy precipitation, and to examine its seasonality. Analyses are based on the Climate Prediction Center (CPC) daily precipitation data from 1948 to 2012. We use a block maxima approach to identify changes in the magnitude of heavy precipitation and a peak-over-threshold (POT) approach for the changes in the frequency. The results of this study show that there is a stronger signal of change in the frequency rather than in the magnitude of heavy precipitation events. Also, results show an increasing trend in the frequency of heavy precipitation over large areas of the contiguous USA with the most notable exception of the US Northwest. These results indicate that over the last 65 years, the stronger storms are not getting stronger, but a larger number of heavy precipitation events have been observed. The annual maximum precipitation and annual frequency of heavy precipitation reveal a marked seasonality over the contiguous USA. However, we could not find any evidence suggesting shifting in the seasonality of annual maximum precipitation by investigating whether the day of the year at which the maximum precipitation occurs has changed over time. Furthermore, we examine whether the year-to-year variations in the frequency and magnitude of heavy precipitation can be explained in terms of climate variability driven by the influence of the Atlantic and Pacific Oceans. Our findings indicate that the climate variability of both the Atlantic and Pacific Oceans can exert a large control on the precipitation frequency and magnitude over the contiguous USA. Also, the results indicate that part of the spatial and temporal features of the relationship between climate variability and heavy precipitation magnitude and frequency can be described by one or more of the climate indices considered here.
Similar content being viewed by others
References
Alexander LV, Arblaster JM (2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol 29(3):417
Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res-Atmos 111:D05109. doi:10.1029/2005JD006290
Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321(5895):1481–1484
Andersen TK, Shepherd MJ (2013) Floods in a changing climate. Geography Compass 7(2):95–115
Anderson BT, Gianotti D, Salvucci G (2015) Detectability of historical trends in station-based precipitation characteristics over the continental United States. J Geophys Res-Atmos 120:4842–4859. doi:10.1002/2014JD022960
Ashley ST, Ashley WS (2008) Flood fatalities in the United States. J Appl Meteorol Clim 47(3):805–818
Chen CJ (2012) Hydro-climatic forecasting using sea surface temperatures. A Dissertation in Georgia Institute of Technology
Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421(6925):805–806
Dhakal N, Jain S, Gray A, Dandy M, Stancioff E (2015) Nonstationarity in seasonality of extreme precipitation: a nonparametric circular statistical approach and its application. Water Resour Res 51(6):4499–4515
Dobson AJ (2001) An introduction to generalized linear models, 2nd edn. CRC Press, Boca Raton, p 240
Downton MW, Miller JZB, Pielke RA Jr (2005) Reanalysis of US National Weather Service flood loss database. Natural Hazards Review 6(1):13–22
Durkee JD, Frye JD, Fuhrmann CM, Lacke MC, Jeong HG, Mote TL (2008) Effects of the North Atlantic Oscillation on precipitation-type frequency and distribution in the eastern United States. Theor Appl Climatol 94(1–2):51–65
Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080
Gall M, Borden KA, Emrich CT, Cutter SL (2011) The unsustainable trend of natural hazard losses in the United States. Sustainability 3(11):2157–2181
Gershunov A, Cayan DR (2003) Heavy daily precipitation frequency over the contiguous United States: sources of climatic variability and seasonal predictability. J Clim 16(16):2752–2765
Groisman PY, Knight RW, Karl TR (2012) Changes in intense precipitation over the Central United States. J Hydrometeorol 13(1):47–66
Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18(9):1326–1350
Groisman PY, Knight RW, Karl TR, Easterling DR, Sun B, Lawrimore JH (2004) Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. J Hydrometeorol 5(1):64–85
Groisman PY, Knight RW, Karl TR (2001) Heavy precipitation and high streamflow in the contiguous United States: trends in the twentieth century. B Am Meteorol Soc 82(2):219–246
Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699
Hidore JJ, Oliver JE, Snow M, Snow R (2009). Climatology: an atmospheric science, 3 edn. Prentice Hall, Upper Saddle River, p 385
Higgins RW, Kousky VE (2013) Changes in observed daily precipitation over the United States between 1950–79 and 1980–2009. J Hydrometeorol 14(1):105–121
Higgins RW, Silva VBS, Shi W, Larson J (2007) Relationships between climate variability and fluctuations in daily precipitation over the United States. J Clim 20(14):3561–3579
Higgins RW, Shi W, Yarosh E, Joyce R (2000) Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center ATLAS 7, 40 pp. Available online at http://www.cpc.ncep.noaa.gov/research_papers/ncep_cpc_atlas/7/index.html
Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1):83–95
Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679
IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 3–21
Jain S, Lall U (2001) Floods in a changing climate: does the past represent the future? Water Resour Res 37(12):3193–3205
Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, New York
Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. B Am Meteorol SocB Am Meteorol Soc 79(2):231–241
Karl TR, Knight RW, Easterling DR, Quayle RG (1996) Indices of climate change for the United States. B Am Meteorol Soc 77(2):279–292
Kendall MG (1975) Rank correlation methods. Charles Griffin, London
Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore JH, Arndt D, Bosart L, Changnon D, Cutter SL, Doesken N, Emanuel K (2013) Monitoring and understanding trends in extreme storms: state of knowledge. B Am Meteorol Soc 94(4):499–514
Kunkel KE, Easterling DR, Kristovich DA, Gleason B, Stoecker L, Smith R (2012) Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J Hydrometeorol 13(3):1131–1141
Kunkel KE, Bromirski PD, Brooks HE, Cavazos T, Douglas AV, Easterling DR, Emanuel KA, Ya P, Groisman GJ, Holland TR, Knutson JP, Kossin PD, Komar DH, Levinson, Smith RL (2008) Observed changes in weather and climate extremes. In: Karl TR, Meehl GA, Miller CD, Hassol SJ, Waple AM, Murray WL (eds) Weather and climate extremes in a changing climate: regions of focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands, Synthesis and Assessment Product 3.3. U.S. Climate Change Science Program, Washington, DC, pp. 35–80 113
Kunkel KE, Andsager K, Easterling DR (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12(8):2515–2527
Kuss AJM, Gurdak JJ (2014) Groundwater level response in US principal aquifers to ENSO, NAO, PDO, and AMO. J Hydrol 519:1939–1952. doi:10.1016/j.jhydrol.2014.09.069
Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225(3):103–117
Leathers DJ, Yarnal B, Palecki MA (1991) The Pacific/North American teleconnection pattern and United States climate. Part I: regional temperature and precipitation associations. J Clim 4(5):517–528
Madsen T, Figdor E (2007) When it rains it pours: global warming and rising frequency of extreme precipitation in the United States. Environment Texas Research & Policy Center, 47 pp. Available online at http://www.environmentamerica.org/home/reports/report-archives/global-warming-solutions/global-warming-solutions/when-it-rains-it-pours-global-warming-and-the-rising-frequency-of-extreme-precipitation-in-the-united-states
McCabe GJ, Wolock DM (2014) Spatial and temporal patterns in conterminous United States streamflow characteristics. Geophys Res Lett 41(19):6889–6897
Mallakpour I, Villarini G (2016) Investigating the relationship between the frequency of flooding over the Central United States and large-scale climate. Adv. Water Resour 92:159–171
Mallakpour I, Villarini G (2015) The changing nature of flooding across the Central United States. Nature Clim Change 5(3):250–254
Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259
Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78(6):1069–1079
Mass C, Skalenakis A, Warner M (2011) Extreme precipitation over the west coast of North America: is there a trend? J Hydrometeorol 12(2):310–318
Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the US. Geophys Res Lett 36(23). doi:10.1029/2009GL040736
Meehl GA, Arblaster JM, Tebaldi C (2005) Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys Res Lett 32(18):L18719. doi:10.1029/2005GL023680
Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415(6871):514–517
Monier E, Gao X (2014) Climate change impacts on extreme events in the United States: an uncertainty analysis. Clim Chang:1–15. doi:10.1007/s10584-013-1048-1
National Climate Data Center (NCDC) (2015a) Billion-dollar weather and climate disasters. Retrieved July, 2015, from http://www.ncdc.noaa.gov/billions/summary-stats
National Climate Data Center (NCDC) (2015b) Billion-dollar weather and climate disasters. Retrieved July, 2015, from http://www.ncdc.noaa.gov/billions/events
National Climate Data Center (NCDC) (2015c) Billion-dollar weather and climate disasters. Retrieved July, 2015, from http://www.nws.noaa.gov/hic/summaries/WY2013.pdf
National Assessment Synthesis Team (NAST) (2000) Climate change impacts on the United States: the potential consequences of climate variability and change. U.S. Global Change R. Program, Washington, D. C
Neiman PJ, Schick LJ, Ralph FM, Hughes M, Wick GA (2011) Flooding in western Washington: the connection to atmospheric rivers. J Hydrometeorol 12(6):1337–1358
Ning L, Bradley RS (2015) Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J Clim 28(6):2475–2493
National Oceanic and Atmospheric Administration (NOAA) (2015) Southern Oscillation Index (SOI). Retrieved July, 2015, from https://www.ncdc.noaa.gov/teleconnections/enso/indicators/soi/
Pal I, Anderson BT, Salvucci GD, Gianotti DJ (2013) Shifting seasonality and increasing frequency of precipitation in wet and dry seasons across the US. Geophys Res Lett 40(15):4030–4035
Peterson TC, Heim RR Jr, Hirsch R, Kaiser DP, Brooks H, Diffenbaugh NS, Peterson TC, Heim RR, Hirsch R, Kaiser DP, Brooks H, Diffenbaugh NS, Dole RM, Giovannettone JP, Guirguis K, Karl TR, Katz RW, Kunkel K, Lettenmaier D, McCabe GJ, Paciorek CJ, Ryberg KR, Schubert S, Silva VBS, Stewart BC, Vecchia AV, Villarini G, Vose RS, Walsh J, Wehner M, Wolock D, Wolter K, Woodhouse CA, Wuebbles D (2013) Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. B Am Meteorol Soc 94(6):821–834
Pielke RA, Downton MW (2000) Precipitation and damaging, floods: trends in the United States, 1932–97. J Clim 13(20):3625–3637
Pielke RA, Downton MW (1999) US trends in streamflow and precipitation: using societal impact data to address an apparent paradox. B Am Meteorol Soc 80:1435–1436
Pielke RA Jr (1999) Nine fallacies of floods. Clim Chang 42(2):413–438
Portis DH, Walsh JE, El Hamly M, Lamb PJ (2001) Seasonality of the North Atlantic oscillation. J Clim 14(9):2069–2078
Pryor SC, Howe JA, Kunkel KE (2009) How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int J Climatol 29(1):31–45
Pryor SC, Schoof JT (2008) Changes in the seasonality of precipitation over the contiguous USA. J Geophys Res-Atmos 113(D21):1984–2012. doi:10.1029/2008JD010251
Ralph FM, Neiman PJ, Wick GA, Gutman SI, Dettinger MD, Cayan DR, White AB (2006) Flooding on California’s Russian River: role of atmospheric rivers. Geophys Res Lett. doi:10.1029/2006GL026689
Robertson TR, Zak JC, Tissue DT (2010) Precipitation magnitude and timing differentially affect species richness and plant density in the sotol grassland of the Chihuahuan Desert. Oecologia 162(1):185–197
Ropelewski CF, Jones PD (1987) An extension of the Tahiti-Darwin southern oscillation index. Mon Weather Rev 115(9):2161–2165
Rosenberg EA, Keys PW, Booth DB, Hartley D, Burkey J, Steinemann AC, Lettenmaier DP (2010) Precipitation extremes and the impacts of climate change on stormwater infrastructure in Washington State. Clim Chang 102(1–2):319–349
Sheridan SC (2003) North American weather-type frequency and teleconnection indices. Int J Climatol 23(1):27–45
Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, et al. (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. P Roy Soc Lond B Bio 270(1529):2087–2096
Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res-Atmos 118(6):2473–2493
Small D, Islam S, Vogel RM (2006) Trends in precipitation and streamflow in the eastern U.S.: Paradox or perception? Geophys Res Lett 33(3):L03403. doi:10.1029/2005GL024995
Tootle GA, Piechota TC, Singh A (2005) Coupled oceanic-atmospheric variability and US streamflow. Water Resour Res 41(12). doi:10.1029/2005WR004381
Trenberth KE (1984) Signal versus noise in the Southern Oscillation. Mon Weather Rev 112(2):326–332
Villarini G (2016) On the seasonality of flooding across the United States. Adv. Water Resour 87:80–91
Villarini G, Smith JA, Vecchi GA (2013) Changing frequency of heavy rainfall over the Central United States. J Clim 26(1):351–357
Villarini G, Smith JA, Baeck ML, Vitolo R, Stephenson DB, Krajewski WF (2011) On the frequency of heavy rainfall for the Midwest of the United States. J Hydrol 400(1):103–120
Villarini G, Serinaldi F, Smith JA, Krajewski WF (2009) On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour Res 45(8)
Voss R, May W, Roeckner E (2002) Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle. Int J Climatol 22(7):755–777
Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109(4):784–812
Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918
Acknowledgments
The authors acknowledge funding by the U.S. Army Corps of Engineers (USACE) Institute for Water Resources. This material is based in part upon work supported by the National Science Foundation (NSF) under CAREER Grant AGS-1349827 (Gabriele Villarini).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Fig. S1
(PDF 132 kb)
Rights and permissions
About this article
Cite this article
Mallakpour, I., Villarini, G. Analysis of changes in the magnitude, frequency, and seasonality of heavy precipitation over the contiguous USA. Theor Appl Climatol 130, 345–363 (2017). https://doi.org/10.1007/s00704-016-1881-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-016-1881-z