[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Non-nested multi-grid solvers for mixed divergence-free Scott–Vogelius discretizations

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We apply the general framework developed by John et al. in Computing 64:307–321, 2000 to analyze the convergence of multi-level methods for mixed finite element discretizations of the generalized Stokes problem using the Scott–Vogelius element. The Scott–Vogelius element seems to be promising since discretely divergence-free functions are divergence-free pointwise. However, to satisfy the Ladyzhenskaya–Babuška–Brezzi stability condition, we have to deal in the multi-grid analysis with non-nested families of meshes which are derived from nested macro element triangulations. Additionally, the analysis takes into account an optional symmetric stabilization operator which suppresses spurious oscillations of the velocity provoked by a dominant reaction term. Usually, the generalized Stokes problems appears in semi-implicit splitting schemes for the unsteady Navier–Stokes equations, but the symmetric part of a stabilized discrete Oseen problem can be reguarded as a discrete generalized Stokes problem likewise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arnold DN, Qin J (1992) Quadratic velocity/linear pressure Stokes elements. In: Advances in computer methods for partial differential equations VII, pp 28–34

  2. Bank RE, Welfert BD, Yserentant H (1990) A class of iterative methods for solving saddle point problems. Numer Math 56: 645–666

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38: 173–199

    Article  MATH  MathSciNet  Google Scholar 

  4. Braack M, Burman E (2006) Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J Numer Anal 43: 2544–2566

    MATH  MathSciNet  Google Scholar 

  5. Braess D, Sarazin R (1997) An efficient smoother for the Stokes problem. Appl Numer Math 23: 3–19

    Article  MATH  MathSciNet  Google Scholar 

  6. Braess D, Verfürth R (1990) Multigrid methods for nonconforming finite element methods. SIAM J Numer Anal 27: 979–986

    Article  MATH  MathSciNet  Google Scholar 

  7. Braess D, Dryja M, Hackbusch W (1999) A multigrid method for nonconforming FE-discretisations with applications to non-matching grids. Computing 63: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  8. Bristeau MO, Glowinski R, Periaux J (1987) Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flow. Comput Phys Reports 6: 73–187

    Article  Google Scholar 

  9. Burman E, Hansbo P (2004) Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput Methods Appl Mech Eng 193: 1437–1453

    Article  MATH  MathSciNet  Google Scholar 

  10. Burman E, Linke A (2007) Stabilized finite element schemes for incompressible flow using Scott–Vogelius elements. Appl Numer Math. doi:10.1016/j.apnum.2007.11.001 (accepted)

  11. Burman E, Fernández MA, Hansbo P (2006) Continuous interior penalty finite element method for Oseen’s equations. SIAM J Numer Anal 44: 1248–1274

    Article  MATH  MathSciNet  Google Scholar 

  12. Ganesan S, Matthies G, Tobiska L (2008) Local projection stabilization of equal order interpolation applied to the Stokes problem. Math Comput 77: 2039–2060

    Article  MathSciNet  Google Scholar 

  13. Girault V, Raviart P-A (1986) Finite element methods for the Navier–Stokes equations. Springer, Berlin

    MATH  Google Scholar 

  14. John V, Matthies G (2001) Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int J Numer Methods Fluids 37: 885–903

    Article  MATH  Google Scholar 

  15. John V, Matthies G (2004) MooNMD—a program package based on mapped finite element methods. Comput Vis Sci 6: 163–170

    MATH  MathSciNet  Google Scholar 

  16. John V, Tobiska L (2000) A coupled multigrid method for nonconforming finite element discretisations of the Stokes equation. Computing 64: 307–321

    Article  MATH  MathSciNet  Google Scholar 

  17. John V, Knobloch P, Matthies G, Tobiska L (2002) Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing 68: 313–341

    Article  MATH  MathSciNet  Google Scholar 

  18. Manservisi S (2006) Numerical analysis of Vanka-type solvers for steady Stokes and Navier–Stokes flows. SIAM J Numer Anal 44: 2025–2056

    Article  MATH  MathSciNet  Google Scholar 

  19. Matthies G, Skrzypacz P, Tobiska L (2007) A unified convergence analysis for local projection stabilisations applied to the Oseen problem. M2AN Math Model Numer Anal 41: 713–742

    Article  MATH  MathSciNet  Google Scholar 

  20. Olshanskii M, Reusken A (2004) Grad-div stabilization for Stokes equations. Math Comput 73: 1699–1718

    MATH  MathSciNet  Google Scholar 

  21. Ouazzi A, Turek S (2006) Efficient multigrid and data structures for edge-oriented FEM stabilization. In: Numerical mathematics and advanced applications. Springer, Berlin, pp 520–527

  22. Qin J (1994) On the convergence of some low order mixed finite elements for incompressible fluids. PhD thesis, Pennsylvania State University

  23. Sacchi Landriani G, Vandeven H (1989) Polynomial approximation of divergence-free functions. Math Comput 52: 103–130

    Article  MATH  MathSciNet  Google Scholar 

  24. Sarazin R (1996) Eine Klasse von effizienten Glättern vom Jacobi-Typ für das Stokes-Problem. PhD thesis, Ruhr-Universität Bochum

  25. Schöberl J, Zulehner W (2003) On Schwarz-type smoothers for saddle point problems. Numer Math 95: 377–399

    Article  MATH  MathSciNet  Google Scholar 

  26. Scott L, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput 54: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  27. Scott LR, Vogelius M (1985) Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. Math Model Numer Anal 19: 111–143

    MATH  MathSciNet  Google Scholar 

  28. Vanka S (1986) Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp Methods Appl Mech Eng 59: 29–48

    Article  MATH  Google Scholar 

  29. Vogelius M (1983) A right-inverse for the divergence operator in spaces of piecewise polynomials. Application to the p-version of the finite element method. Numer Math 41: 19–37

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang S (2005) A new family of stable mixed finite elements for the 3D Stokes equations. Math Comput 74: 543–554

    MATH  Google Scholar 

  31. Zulehner W (2000) A class of smoothers for saddle point problems. Computing 65: 227–246

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Linke.

Additional information

A. Linke has partially been funded by the DFG Research Center Matheon in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linke, A., Matthies, G. & Tobiska, L. Non-nested multi-grid solvers for mixed divergence-free Scott–Vogelius discretizations. Computing 83, 87–107 (2008). https://doi.org/10.1007/s00607-008-0016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-008-0016-5

Keywords

Mathematics Subject Classification (2000)

Navigation