Abstract
The existence of a rigged Hilbert space whose extreme spaces are, respectively, the projective and the inductive limit of a directed contractive family of Hilbert spaces is investigated. It is proved that, when it exists, this rigged Hilbert space is the same as the canonical rigged Hilbert space associated to a family of closable operators in the central Hilbert space.
Similar content being viewed by others
References
Antoine J.-P., Trapani C.: Partial Inner Product Spaces: Theory and Applications. Springer Lecture Notes in Mathematics, vol. 1986. Berlin, Heidelberg (2009)
Antoine J.-P., Grossmann A.: Partial inner product spaces. I. General properties. J. Funct. Anal. 23, 369–378 (1976)
Antoine J.-P., Grossmann A.: Partial inner product spaces. II. Operators. J. Funct. Anal. 23, 379–391 (1976)
Antoine J.-P., Inoue A., Trapani C.: Partial *-Algebras and Their Operator Realizations, Mathematics and Its Applications, vol. 553. Kluwer, Dordrecht (2002)
Friedrich M., Lassner G.: Angereicherte Hilberträume, die zu Operatorenalgebren assoziiert sind. Wiss. Z. KMU, Leipzig, Math.-Nat.R. 27, 245–251 (1978)
Friedrich, M., Lassner, G.: Rigged Hilbert spaces and topology on operator algebras, preprint, JINR, Dubna (1979)
Grossmann A.: Elementary properties of nested Hilbert spaces. Commun. Math. Phys. 2, 1–30 (1965)
Kadison R.V., Ringrose J.R.: Fundamentals of the Theory of Operator Algebras, vol. II. Academic Press, New York (1986)
Kürsten K.-D.: On algebraic properties of partial algebras. Rend. Circ. Mat. Palermo, Ser. II, Suppl. 56, 111–122 (1998)
Schaefer H.H.: Topological Vector Spaces. Springer, Berlin (1971)
Schmüdgen K.: Unbounded Operator Algebras and Representation Theory. Akademie, Berlin (1990)
Trapani C., Tschinke F.: Partial multiplication of operators in rigged Hilbert spaces. Integral Equ. Oper. Theory 51, 583–600 (2005)
Trapani C., Tschinke F.: Partial *-algebras of distributions. Publ. Res. Inst. Math. Sci. Kyoto Univ. 41, 259–279 (2005)
van Eijndhoven S.J.L., Kruszynski P.: Spectral trajectories, duality and inductive-projective limits of Hilbert spaces. Studia Mathematica 90, 45–60 (1988)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Karlheinz Gröchenig.
Rights and permissions
About this article
Cite this article
Bellomonte, G., Trapani, C. Rigged Hilbert spaces and contractive families of Hilbert spaces. Monatsh Math 164, 271–285 (2011). https://doi.org/10.1007/s00605-010-0249-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00605-010-0249-1