Abstract
Recently, Hwang proved a central limit theorem for restricted Λ-partitions, where Λ can be any nondecreasing sequence of integers tending to infinity that satisfies certain technical conditions. In particular, one of these conditions is that the associated Dirichlet series has only a single pole on the abscissa of convergence. In the present paper, we show that this condition can be relaxed, and provide some natural examples that arise from the study of integers with restrictions on their digital (base-b) expansion.
Similar content being viewed by others
References
Allouche J.-P., Mendés France M., Peyriére J.: Automatic Dirichlet series. J. Number Theory 81(2), 359–373 (2000)
Allouche J.-P., Shallit J., Skordev G.: Self-generating sets, integers with missing blocks, and substitutions. Discrete Math. 292(1–3), 1–15 (2005)
Andrews, G.E.: The theory of partitions. Encyclopedia of Mathematics and its Applications, vol. 2. Addison-Wesley Publishing Co., Reading (1976)
Curtiss J.: A note on the theory of moment generating functions. Ann. Math. Stat. 13, 430–433 (1942)
Erdős P., Lehner J.: The distribution of the number of summands in the partitions of a positive integer. Duke Math. J. 8, 335–345 (1941)
Erdős P., Mauduit C., Sárközy A.: On arithmetic properties of integers with missing digits. I. Distribution in residue classes. J. Number Theory 70(2), 99–120 (1998)
Erdős, P., Mauduit, C., Sárközy, A.: On arithmetic properties of integers with missing digits. II. Prime factors. Discrete Math. 200(1–3), 149–164 [Paul Erdős memorial collection. (1999)]
Erdős, P., Szalay, M.: On the statistical theory of partitions. In: Topics in classical number theory, vol. I, II (Budapest 1981). Colloq. Math. Soc. János Bolyai, vol. 34, pp. 397–450. North-Holland, Amsterdam (1984)
Flajolet P., Gourdon X., Dumas P.: Mellin transforms and asymptotics: harmonic sums. Theoret. Comput. Sci. 144(1–2), 3–58 (1995) [Special volume on mathematical analysis of algorithms]
Flajolet P., Grabner P., Kirschenhofer P., Prodinger H., Tichy R.F.: Mellin transforms and asymptotics: digital sums. Theoret. Comput. Sci. 123(2), 291–314 (1994)
Gel’fond A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13, 259–265 (1967/1968)
Goh W.M.Y., Schmutz E.: The number of distinct part sizes in a random integer partition. J. Combin. Theory Ser. A 69(1), 149–158 (1995)
Hwang H.-K.: Limit theorems for the number of summands in integer partitions. J. Combin. Theory Ser. A 96(1), 89–126 (2001)
Ingham A.E.: A Tauberian theorem for partitions. Ann. Math. 42(2), 1075–1090 (1941)
Mauduit C., Sárközy A.: On the arithmetic structure of sets characterized by sum of digits properties. J. Number Theory 61(1), 25–38 (1996)
Meinardus G.: Asymptotische Aussagen über Partitionen. Math. Z. 59, 388–398 (1954)
Roth K.F., Szekeres G.: Some asymptotic formulae in the theory of partitions. Quart. J. Math. Oxford Ser. 5(2), 241–259 (1954)
Schmutz E.: Part sizes of random integer partitions. Indian J. Pure Appl. Math. 25(6), 567–575 (1994)
Sloane, N.J.A.: The Online encyclopedia of integer sequences. Published electronically at http://www.research.att.com/~njas/sequences
Tenenbaum, G.: Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés [Specialized Courses], vol. 1, 2nd edn. Société Mathématique de France, Paris (1995)
Thuswaldner J.M., Tichy R.F.: Waring’s problem with digital restrictions. Israel J. Math. 149, 317–344 (2005) [Probability in mathematics]
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. Schoißengeier.
Rights and permissions
About this article
Cite this article
Madritsch, M., Wagner, S. A central limit theorem for integer partitions. Monatsh Math 161, 85–114 (2010). https://doi.org/10.1007/s00605-009-0126-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00605-009-0126-y