[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A central limit theorem for integer partitions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Recently, Hwang proved a central limit theorem for restricted Λ-partitions, where Λ can be any nondecreasing sequence of integers tending to infinity that satisfies certain technical conditions. In particular, one of these conditions is that the associated Dirichlet series has only a single pole on the abscissa of convergence. In the present paper, we show that this condition can be relaxed, and provide some natural examples that arise from the study of integers with restrictions on their digital (base-b) expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allouche J.-P., Mendés France M., Peyriére J.: Automatic Dirichlet series. J. Number Theory 81(2), 359–373 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allouche J.-P., Shallit J., Skordev G.: Self-generating sets, integers with missing blocks, and substitutions. Discrete Math. 292(1–3), 1–15 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrews, G.E.: The theory of partitions. Encyclopedia of Mathematics and its Applications, vol. 2. Addison-Wesley Publishing Co., Reading (1976)

  4. Curtiss J.: A note on the theory of moment generating functions. Ann. Math. Stat. 13, 430–433 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erdős P., Lehner J.: The distribution of the number of summands in the partitions of a positive integer. Duke Math. J. 8, 335–345 (1941)

    Article  MathSciNet  Google Scholar 

  6. Erdős P., Mauduit C., Sárközy A.: On arithmetic properties of integers with missing digits. I. Distribution in residue classes. J. Number Theory 70(2), 99–120 (1998)

    Article  MathSciNet  Google Scholar 

  7. Erdős, P., Mauduit, C., Sárközy, A.: On arithmetic properties of integers with missing digits. II. Prime factors. Discrete Math. 200(1–3), 149–164 [Paul Erdős memorial collection. (1999)]

  8. Erdős, P., Szalay, M.: On the statistical theory of partitions. In: Topics in classical number theory, vol. I, II (Budapest 1981). Colloq. Math. Soc. János Bolyai, vol. 34, pp. 397–450. North-Holland, Amsterdam (1984)

  9. Flajolet P., Gourdon X., Dumas P.: Mellin transforms and asymptotics: harmonic sums. Theoret. Comput. Sci. 144(1–2), 3–58 (1995) [Special volume on mathematical analysis of algorithms]

    Article  MATH  MathSciNet  Google Scholar 

  10. Flajolet P., Grabner P., Kirschenhofer P., Prodinger H., Tichy R.F.: Mellin transforms and asymptotics: digital sums. Theoret. Comput. Sci. 123(2), 291–314 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gel’fond A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith. 13, 259–265 (1967/1968)

    Google Scholar 

  12. Goh W.M.Y., Schmutz E.: The number of distinct part sizes in a random integer partition. J. Combin. Theory Ser. A 69(1), 149–158 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hwang H.-K.: Limit theorems for the number of summands in integer partitions. J. Combin. Theory Ser. A 96(1), 89–126 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ingham A.E.: A Tauberian theorem for partitions. Ann. Math. 42(2), 1075–1090 (1941)

    Article  MathSciNet  Google Scholar 

  15. Mauduit C., Sárközy A.: On the arithmetic structure of sets characterized by sum of digits properties. J. Number Theory 61(1), 25–38 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Meinardus G.: Asymptotische Aussagen über Partitionen. Math. Z. 59, 388–398 (1954)

    Article  MathSciNet  Google Scholar 

  17. Roth K.F., Szekeres G.: Some asymptotic formulae in the theory of partitions. Quart. J. Math. Oxford Ser. 5(2), 241–259 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schmutz E.: Part sizes of random integer partitions. Indian J. Pure Appl. Math. 25(6), 567–575 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Sloane, N.J.A.: The Online encyclopedia of integer sequences. Published electronically at http://www.research.att.com/~njas/sequences

  20. Tenenbaum, G.: Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés [Specialized Courses], vol. 1, 2nd edn. Société Mathématique de France, Paris (1995)

  21. Thuswaldner J.M., Tichy R.F.: Waring’s problem with digital restrictions. Israel J. Math. 149, 317–344 (2005) [Probability in mathematics]

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Madritsch.

Additional information

Communicated by J. Schoißengeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madritsch, M., Wagner, S. A central limit theorem for integer partitions. Monatsh Math 161, 85–114 (2010). https://doi.org/10.1007/s00605-009-0126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-009-0126-y

Keywords

Mathematics Subject Classification (2000)

Navigation